File size: 5,464 Bytes
ddb02da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from flask import Flask, request, jsonify, send_file
from PIL import Image
import base64
import spaces
from loadimg import load_img
from io import BytesIO
import numpy as np
import insightface
import onnxruntime as ort
import huggingface_hub
from SegCloth import segment_clothing
from transparent_background import Remover
import threading
import logging
import uuid
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

app = Flask(__name__)

# Configure logging
logging.basicConfig(level=logging.INFO)

# Load the model lazily
model = None
detector = None

def load_model():
    global model, detector
    path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
    options = ort.SessionOptions()
    options.intra_op_num_threads = 8
    options.inter_op_num_threads = 8
    # Ensure the session is created with CPUExecutionProvider only
    session = ort.InferenceSession(
        path, sess_options=options, providers=["CPUExecutionProvider"]
    )
    model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
    model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
    detector = model
    logging.info("Model loaded successfully.")

torch.set_float32_matmul_precision(["high", "highest"][0])

# Load BiRefNet for segmentation, set to CPU
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cpu")  # Move the model to CPU
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# Function to decode a base64 image to PIL.Image.Image
def decode_image_from_base64(image_data):
    image_data = base64.b64decode(image_data)
    image = Image.open(BytesIO(image_data)).convert("RGB")
    return image

# Function to encode a PIL image to base64
def encode_image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")  # Use PNG for compatibility with RGBA
    return base64.b64encode(buffered.getvalue()).decode('utf-8')

# Remove background using BiRefNet on CPU
def rm_background(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    image_size = im.size
    origin = im.copy()
    image = load_img(im)
    input_images = transform_image(image).unsqueeze(0).to("cpu")  # Ensure CPU usage
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image

# Remove background with the transparent background remover
def remove_background(image):
    remover = Remover()
    if isinstance(image, Image.Image):
        output = remover.process(image)
    elif isinstance(image, np.ndarray):
        image_pil = Image.fromarray(image)
        output = remover.process(image_pil)
    else:
        raise TypeError("Unsupported image type")
    return output

def detect_and_segment_persons(image, clothes):
    img = np.array(image)
    img = img[:, :, ::-1]  # RGB -> BGR

    if detector is None:
        load_model()  # Ensure the model is loaded

    bboxes, kpss = detector.detect(img)
    if bboxes.shape[0] == 0:
        return [save_image(rm_background(image))]

    height, width, _ = img.shape
    bboxes = np.round(bboxes[:, :4]).astype(int)
    bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
    bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
    bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
    bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)

    all_segmented_images = []
    for i in range(bboxes.shape[0]):
        bbox = bboxes[i]
        x1, y1, x2, y2 = bbox
        person_img = img[y1:y2, x1:x2]
        pil_img = Image.fromarray(person_img[:, :, ::-1])

        img_rm_background = rm_background(pil_img)
        segmented_result = segment_clothing(img_rm_background, clothes)
        image_paths = [save_image(img) for img in segmented_result]
        print(image_paths)
        all_segmented_images.extend(image_paths)

    return all_segmented_images

@app.route('/', methods=['GET'])
def welcome():
    return "Welcome to Clothing Segmentation API"

@app.route('/api/detect', methods=['POST'])
def detect():
    try:
        data = request.json
        image_base64 = data['image']
        image = decode_image_from_base64(image_base64)

        clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]

        result = detect_and_segment_persons(image, clothes)

        return jsonify({'images': result})
    except Exception as e:
        logging.error(f"Error occurred: {e}")
        return jsonify({'error': str(e)}), 500

# Route to retrieve the generated image
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
    # Construct the full image path
    image_path = image_id  # Ensure the file name matches the one used during saving

    # Return the image
    try:
        return send_file(image_path, mimetype='image/png')
    except FileNotFoundError:
        return jsonify({'error': 'Image not found'}), 404

if __name__ == "__main__":
    app.run(debug=True, host="0.0.0.0", port=7860)