import os import onnxruntime import gradio as gr import numpy as np from PIL import Image onnx_model_path = "sarcoloring.onnx" sess = onnxruntime.InferenceSession(onnx_model_path) def predict(input_image): input_image = input_image.resize((256, 256)) input_image = np.array(input_image).transpose(2, 0, 1) input_image = input_image.astype(np.float32) / 255.0 input_image = (input_image - 0.5) / 0.5 input_image = np.expand_dims(input_image, axis=0) # Run the model inputs = {sess.get_inputs()[0].name: input_image} output = sess.run(None, inputs) output_image = output[0].squeeze().transpose(1, 2, 0) output_image = (output_image + 1) / 2 # [0,1] output_image = (output_image * 255).astype(np.uint8) return Image.fromarray(output_image) example_images = [[os.path.join("examples", fname)] for fname in os.listdir("examples")] iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), examples=example_images ) iface.launch()