Murali2003 commited on
Commit
667f179
·
verified ·
1 Parent(s): f249861

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -92
app.py DELETED
@@ -1,92 +0,0 @@
1
- from transformers import FSMTForConditionalGeneration, FSMTTokenizer
2
- from transformers import AutoModelForSequenceClassification
3
- from lxml_html_clean import Cleaner
4
-
5
-
6
- from transformers import AutoTokenizer
7
- from langdetect import detect
8
- from newspaper import Article
9
- from PIL import Image
10
- import streamlit as st
11
-
12
- import requests
13
- import torch
14
-
15
- st.markdown("## Prediction of Misinformation by given URL")
16
- background = Image.open('logo.jpg')
17
- st.image(background)
18
-
19
- st.markdown(f"### Article URL")
20
- text = st.text_area("Insert some url here",
21
- value="https://www.livelaw.in/news-updates/supreme-court-collegium-recommends-appointment-advocate-praveen-kumar-giri-judge-allahabad-high-court-279470")
22
-
23
- # @st.cache(allow_output_mutation=True)
24
- # def get_models_and_tokenizers():
25
- # model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
26
- # model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
27
- # model.eval()
28
- # tokenizer = AutoTokenizer.from_pretrained(model_name)
29
- # model.load_state_dict(torch.load('./my_saved_model/checkpoint-6320/rng_state.pth', map_location='cpu'))
30
-
31
- # model_name_translator = "facebook/wmt19-ru-en"
32
- # tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
33
- # model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
34
- # model_translator.eval()
35
- # return model, tokenizer, model_translator, tokenizer_translator
36
- @st.cache_data()
37
- def get_models_and_tokenizers():
38
- model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
39
- checkpoint_dir = './my_saved_model/checkpoint-6320/' # Path to your checkpoint folder
40
-
41
- # Load the classification model and tokenizer
42
- model = AutoModelForSequenceClassification.from_pretrained(checkpoint_dir, num_labels=2)
43
- tokenizer = AutoTokenizer.from_pretrained(model_name)
44
-
45
- # Load the translator model and tokenizer
46
- model_name_translator = "facebook/wmt19-ru-en"
47
- tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
48
- model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
49
-
50
- model.eval()
51
- model_translator.eval()
52
- return model, tokenizer, model_translator, tokenizer_translator
53
-
54
- model, tokenizer, model_translator, tokenizer_translator = get_models_and_tokenizers()
55
-
56
- article = Article(text)
57
- article.download()
58
- article.parse()
59
- concated_text = article.title + '. ' + article.text
60
- lang = detect(concated_text)
61
-
62
- st.markdown(f"### Language detection")
63
-
64
- if lang == 'ru':
65
- st.markdown(f"The language of this article is {lang.upper()} so we translated it!")
66
- with st.spinner('Waiting for translation'):
67
- input_ids = tokenizer_translator.encode(concated_text,
68
- return_tensors="pt", max_length=512, truncation=True)
69
- outputs = model_translator.generate(input_ids)
70
- decoded = tokenizer_translator.decode(outputs[0], skip_special_tokens=True)
71
- st.markdown("### Translated Text")
72
- st.markdown(f"{decoded[:777]}")
73
- concated_text = decoded
74
- else:
75
- st.markdown(f"The language of this article for sure: {lang.upper()}!")
76
-
77
- st.markdown("### Extracted Text")
78
- st.markdown(f"{concated_text[:777]}")
79
-
80
- tokens_info = tokenizer(concated_text, truncation=True, return_tensors="pt")
81
- with torch.no_grad():
82
- raw_predictions = model(**tokens_info)
83
- softmaxed = int(torch.nn.functional.softmax(raw_predictions.logits[0], dim=0)[1] * 100)
84
- st.markdown("### Truthteller Predicts..")
85
- st.progress(softmaxed)
86
- st.markdown(f"This is fake by *{softmaxed}%*!")
87
- if (softmaxed > 70):
88
- st.error('We would not trust this text! This is misleading..')
89
- elif (softmaxed > 40):
90
- st.warning('We are not sure about this text!')
91
- else:
92
- st.success('We would trust this text!')