from typing import List import math import os import numpy as np import torch import einops import pytorch_lightning as pl import gradio as gr from PIL import Image from omegaconf import OmegaConf from openxlab.model import download from tqdm import tqdm from model.spaced_sampler import SpacedSampler from model.cldm import ControlLDM from utils.image import auto_resize, pad from utils.common import instantiate_from_config, load_state_dict from utils.face_restoration_helper import FaceRestoreHelper # download models to local directory download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_full_v1") download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_swinir_v1") download(model_repo="linxinqi/DiffBIR", model_name="diffbir_face_full_v1") config = "cldm.yaml" general_full_ckpt = "general_full_v1.ckpt" general_swinir_ckpt = "general_swinir_v1.ckpt" face_full_ckpt = "face_full_v1.ckpt" # create general model general_model: ControlLDM = instantiate_from_config(OmegaConf.load(config)).cuda() load_state_dict(general_model, torch.load(general_full_ckpt, map_location="cuda"), strict=True) load_state_dict(general_model.preprocess_model, torch.load(general_swinir_ckpt, map_location="cuda"), strict=True) general_model.freeze() # keep a reference of general model's preprocess model and parallel model general_preprocess_model = general_model.preprocess_model general_control_model = general_model.control_model # create face model face_model: ControlLDM = instantiate_from_config(OmegaConf.load(config)) load_state_dict(face_model, torch.load(face_full_ckpt, map_location="cpu"), strict=True) face_model.freeze() # share the pretrained weights with general model _tmp = face_model.first_stage_model face_model.first_stage_model = general_model.first_stage_model del _tmp _tmp = face_model.cond_stage_model face_model.cond_stage_model = general_model.cond_stage_model del _tmp _tmp = face_model.model face_model.model = general_model.model del _tmp face_model.cuda() def to_tensor(image, device, bgr2rgb=False): if bgr2rgb: image = image[:, :, ::-1] image_tensor = torch.tensor(image[None] / 255.0, dtype=torch.float32, device=device).clamp_(0, 1) image_tensor = einops.rearrange(image_tensor, "n h w c -> n c h w").contiguous() return image_tensor def to_array(image): image = image.clamp(0, 1) image_array = (einops.rearrange(image, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8) return image_array @torch.no_grad() def process( control_img: Image.Image, use_face_model: bool, num_samples: int, sr_scale: int, disable_preprocess_model: bool, strength: float, positive_prompt: str, negative_prompt: str, cfg_scale: float, steps: int, use_color_fix: bool, seed: int, tiled: bool, tile_size: int, tile_stride: int # progress = gr.Progress(track_tqdm=True) ) -> List[np.ndarray]: pl.seed_everything(seed) global general_model global face_model model = general_model sampler = SpacedSampler(model, var_type="fixed_small") model.control_scales = [strength] * 13 if use_face_model: print("use face model") sampler_face = SpacedSampler(face_model, var_type="fixed_small") face_model.control_scales = [strength] * 13 # prepare condition if sr_scale != 1: control_img = control_img.resize( tuple(math.ceil(x * sr_scale) for x in control_img.size), Image.BICUBIC ) input_size = control_img.size if not tiled: control_img = auto_resize(control_img, 512) else: control_img = auto_resize(control_img, tile_size) h, w = control_img.height, control_img.width control_img = pad(np.array(control_img), scale=64) # HWC, RGB, [0, 255] if use_face_model: # set up FaceRestoreHelper face_size = 512 face_helper = FaceRestoreHelper(device=model.device, upscale_factor=1, face_size=face_size, use_parse=True) # read BGR numpy [0, 255] face_helper.read_image(np.array(control_img)[:, :, ::-1]) # detect faces in input lq control image face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) face_helper.align_warp_face() control = to_tensor(control_img, device=model.device) if not disable_preprocess_model: control = model.preprocess_model(control) height, width = control.size(-2), control.size(-1) preds = [] for _ in tqdm(range(num_samples)): shape = (1, 4, height // 8, width // 8) x_T = torch.randn(shape, device=model.device, dtype=torch.float32) if not tiled: samples = sampler.sample( steps=steps, shape=shape, cond_img=control, positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T, cfg_scale=cfg_scale, cond_fn=None, color_fix_type="wavelet" if use_color_fix else "none" ) else: samples = sampler.sample_with_mixdiff( tile_size=int(tile_size), tile_stride=int(tile_stride), steps=steps, shape=shape, cond_img=control, positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T, cfg_scale=cfg_scale, cond_fn=None, color_fix_type="wavelet" if use_color_fix else "none" ) restored_bg = to_array(samples) if use_face_model and len(face_helper.cropped_faces) > 0: shape_face = (1, 4, face_size // 8, face_size // 8) x_T_face = torch.randn(shape_face, device=model.device, dtype=torch.float32) # face detected for cropped_face in face_helper.cropped_faces: cropped_face = to_tensor(cropped_face, device=model.device, bgr2rgb=True) if not disable_preprocess_model: cropped_face = face_model.preprocess_model(cropped_face) samples_face = sampler_face.sample( steps=steps, shape=shape, cond_img=cropped_face, positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T_face, cfg_scale=1.0, cond_fn=None, color_fix_type="wavelet" if use_color_fix else "none" ) restored_face = to_array(samples_face) face_helper.add_restored_face(restored_face[0]) face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = face_helper.paste_faces_to_input_image( upsample_img=restored_bg[0] ) # remove padding and resize to input size restored_img = Image.fromarray(restored_img[:h, :w, :]).resize(input_size, Image.LANCZOS) preds.append(np.array(restored_img)) return preds MAX_SIZE = int(os.getenv("MAX_SIZE")) CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT")) print(f"max size = {MAX_SIZE}, concurrency_count = {CONCURRENCY_COUNT}") MARKDOWN = \ """ ## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [GitHub](https://github.com/XPixelGroup/DiffBIR) | [Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/) If DiffBIR is helpful for you, please help star the GitHub Repo. Thanks! ## NOTE 1. This app processes user-uploaded images in sequence, so it may take some time before your image begins to be processed. 2. This is a publicly-used app, so please don't upload large images (>= 1024) to avoid taking up too much time. """ block = gr.Blocks().queue(concurrency_count=CONCURRENCY_COUNT, max_size=MAX_SIZE) with block: with gr.Row(): gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): input_image = gr.Image(source="upload", type="pil") run_button = gr.Button(label="Run") with gr.Accordion("Options", open=True): use_face_model = gr.Checkbox(label="Use Face Model", value=False) tiled = gr.Checkbox(label="Tiled", value=False) tile_size = gr.Slider(label="Tile Size", minimum=512, maximum=1024, value=512, step=256) tile_stride = gr.Slider(label="Tile Stride", minimum=256, maximum=512, value=256, step=128) num_samples = gr.Slider(label="Number Of Samples", minimum=1, maximum=12, value=1, step=1) sr_scale = gr.Number(label="SR Scale", value=1) positive_prompt = gr.Textbox(label="Positive Prompt", value="") negative_prompt = gr.Textbox( label="Negative Prompt", value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality" ) cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to a value larger than 1 to enable it!)", minimum=0.1, maximum=30.0, value=1.0, step=0.1) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1) disable_preprocess_model = gr.Checkbox(label="Disable Preprocess Model", value=False) use_color_fix = gr.Checkbox(label="Use Color Correction", value=True) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231) with gr.Column(): result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style(height="auto", grid=2) # gr.Markdown("## Image Examples") gr.Examples( examples=[ ["examples/face/0229.png", True, 1, 1, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256], ["examples/face/hermione.jpg", True, 1, 2, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256], ["examples/general/14.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256], ["examples/general/49.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256], ["examples/general/53.jpeg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256], # ["examples/general/bx2vqrcj.png", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, True, 512, 256], ], inputs=[ input_image, use_face_model, num_samples, sr_scale, disable_preprocess_model, strength, positive_prompt, negative_prompt, cfg_scale, steps, use_color_fix, seed, tiled, tile_size, tile_stride ], outputs=[result_gallery], fn=process, cache_examples=True, ) inputs = [ input_image, use_face_model, num_samples, sr_scale, disable_preprocess_model, strength, positive_prompt, negative_prompt, cfg_scale, steps, use_color_fix, seed, tiled, tile_size, tile_stride ] run_button.click(fn=process, inputs=inputs, outputs=[result_gallery]) block.launch()