Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
import evaluate # Untuk evaluasi ROUGE
|
| 5 |
+
import pandas as pd # Untuk membuat DataFrame untuk tabel hasil evaluasi
|
| 6 |
+
import io # Untuk download file
|
| 7 |
+
|
| 8 |
+
rouge_metric = evaluate.load("rouge")
|
| 9 |
+
|
| 10 |
+
# ---------- LOAD MODELS ----------
|
| 11 |
+
# Fungsi untuk memuat model T5 Bahasa Indonesia
|
| 12 |
+
def load_t5_indonesian_model():
|
| 13 |
+
try:
|
| 14 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
|
| 15 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
|
| 16 |
+
|
| 17 |
+
# Pindahkan model ke GPU jika tersedia
|
| 18 |
+
t5_device = 0 if torch.cuda.is_available() else -1
|
| 19 |
+
if t5_device != -1:
|
| 20 |
+
t5_model.to(f"cuda:{t5_device}")
|
| 21 |
+
|
| 22 |
+
print("Model T5 Bahasa Indonesia (cahya/t5) berhasil dimuat.")
|
| 23 |
+
return t5_tokenizer, t5_model, t5_device
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error saat memuat model T5 Bahasa Indonesia: {str(e)}")
|
| 26 |
+
return None, None, -1
|
| 27 |
+
|
| 28 |
+
# Fungsi untuk memuat model IndoBART v2
|
| 29 |
+
def load_indobart_model():
|
| 30 |
+
try:
|
| 31 |
+
# Menggunakan pipeline untuk IndoBART
|
| 32 |
+
indobart_pipeline = pipeline("summarization", model="gaduhhartawan/indobart-base-v2")
|
| 33 |
+
print("Model IndoBART v2 (gaduhhartawan/indobart) berhasil dimuat.")
|
| 34 |
+
return indobart_pipeline
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error saat memuat model IndoBART v2: {str(e)}")
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
+
# Muat kedua model saat aplikasi dimulai
|
| 40 |
+
# Ini akan dimuat hanya sekali ketika script dijalankan
|
| 41 |
+
t5_tokenizer, t5_model, t5_device = load_t5_indonesian_model()
|
| 42 |
+
indobart_summarizer_pipeline = load_indobart_model()
|
| 43 |
+
|
| 44 |
+
# ---------- SUMMARIZATION AND EVALUATION FUNCTION ----------
|
| 45 |
+
def summarize_and_evaluate(text_input, model_choice, min_length_val=30, max_length_val=150, reference_summary=""):
|
| 46 |
+
summarized_text = ""
|
| 47 |
+
status_message = ""
|
| 48 |
+
current_model_name = ""
|
| 49 |
+
|
| 50 |
+
if not text_input.strip():
|
| 51 |
+
return "⚠️ Mohon masukkan teks yang ingin diringkas!", "", "", ""
|
| 52 |
+
|
| 53 |
+
if min_length_val >= max_length_val:
|
| 54 |
+
return "⚠️ Panjang minimum harus lebih kecil dari panjang maksimum!", "", "", ""
|
| 55 |
+
if min_length_val <= 0 or max_length_val <= 0:
|
| 56 |
+
return "⚠️ Panjang tidak boleh nol atau negatif!", "", "", ""
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
if model_choice == "cahya/t5-base-indonesian-summarization-cased":
|
| 60 |
+
current_model_name = "T5 Bahasa Indonesia (cahya/t5)"
|
| 61 |
+
if t5_tokenizer is None or t5_model is None:
|
| 62 |
+
status_message = f"❌ Error: {current_model_name} gagal dimuat."
|
| 63 |
+
else:
|
| 64 |
+
# Tokenisasi dengan prefix dan truncation untuk T5
|
| 65 |
+
input_ids = t5_tokenizer.encode("summarize: " + text_input,
|
| 66 |
+
return_tensors="pt",
|
| 67 |
+
max_length=512, # Batasi panjang input token T5 (umumnya 512)
|
| 68 |
+
truncation=True)
|
| 69 |
+
|
| 70 |
+
# Pindahkan input_ids ke GPU jika model ada di GPU
|
| 71 |
+
if t5_device != -1:
|
| 72 |
+
input_ids = input_ids.to(f"cuda:{t5_device}")
|
| 73 |
+
|
| 74 |
+
# Generasi ringkasan T5
|
| 75 |
+
summary_ids = t5_model.generate(
|
| 76 |
+
input_ids,
|
| 77 |
+
min_length=int(min_length_val),
|
| 78 |
+
max_length=int(max_length_val),
|
| 79 |
+
num_beams=4, # Jumlah beam untuk beam search (meningkatkan kualitas)
|
| 80 |
+
early_stopping=True # Hentikan generasi lebih awal jika semua beam selesai
|
| 81 |
+
)
|
| 82 |
+
summarized_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 83 |
+
status_message = f"✅ Ringkasan dengan {current_model_name} berhasil!"
|
| 84 |
+
|
| 85 |
+
elif model_choice == "gaduhhartawan/indobart-base-v2":
|
| 86 |
+
current_model_name = "IndoBART v2 (gaduhhartawan/indobart)"
|
| 87 |
+
if indobart_summarizer_pipeline is None:
|
| 88 |
+
status_message = f"❌ Error: {current_model_name} gagal dimuat."
|
| 89 |
+
else:
|
| 90 |
+
# Menggunakan pipeline untuk IndoBART
|
| 91 |
+
summary = indobart_summarizer_pipeline(
|
| 92 |
+
text_input,
|
| 93 |
+
min_length=int(min_length_val),
|
| 94 |
+
max_length=int(max_length_val),
|
| 95 |
+
truncation=True # Tetap penting untuk input panjang
|
| 96 |
+
)
|
| 97 |
+
summarized_text = summary[0]['summary_text']
|
| 98 |
+
status_message = f"✅ Ringkasan dengan {current_model_name} berhasil!"
|
| 99 |
+
|
| 100 |
+
else:
|
| 101 |
+
status_message = "⚠️ Pilihan model tidak valid."
|
| 102 |
+
|
| 103 |
+
# --- Evaluasi Ringkasan (jika ada ringkasan referensi) ---
|
| 104 |
+
eval_table_html = ""
|
| 105 |
+
if summarized_text and reference_summary.strip():
|
| 106 |
+
# Untuk ROUGE, kita perlu list of strings untuk predictions dan references
|
| 107 |
+
predictions = [summarized_text]
|
| 108 |
+
references = [reference_summary] # Asumsikan satu referensi
|
| 109 |
+
|
| 110 |
+
# Hitung skor ROUGE
|
| 111 |
+
rouge_scores = rouge_metric.compute(predictions=predictions, references=references)
|
| 112 |
+
|
| 113 |
+
# Format hasil ke dalam DataFrame untuk tampilan yang lebih baik
|
| 114 |
+
# Mengambil skor F1 untuk ROUGE-1, ROUGE-2, ROUGE-L
|
| 115 |
+
evaluation_data = {
|
| 116 |
+
"Metrik": ["ROUGE-1 F1", "ROUGE-2 F1", "ROUGE-L F1"],
|
| 117 |
+
"Skor": [
|
| 118 |
+
f"{rouge_scores['rouge1']:.4f}",
|
| 119 |
+
f"{rouge_scores['rouge2']:.4f}",
|
| 120 |
+
f"{rouge_scores['rougeL']:.4f}"
|
| 121 |
+
]
|
| 122 |
+
}
|
| 123 |
+
evaluation_df = pd.DataFrame(evaluation_data)
|
| 124 |
+
eval_table_html = evaluation_df.to_html(index=False)
|
| 125 |
+
|
| 126 |
+
status_message += " Evaluasi ROUGE selesai."
|
| 127 |
+
elif summarized_text:
|
| 128 |
+
status_message += " (Tidak ada ringkasan referensi untuk evaluasi ROUGE)."
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
result_html = f"""
|
| 132 |
+
<h3>Teks Ringkasan Anda (dengan {current_model_name}):</h3>
|
| 133 |
+
<p>{summarized_text}</p>
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
# Mengembalikan status, HTML hasil, HTML evaluasi, dan teks ringkasan mentah (untuk unduhan)
|
| 137 |
+
return status_message, result_html, eval_table_html, summarized_text
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
return f"❌ Terjadi kesalahan: {str(e)}", "", "", ""
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# ---------- GRADIO INTERFACE ----------
|
| 144 |
+
with gr.Blocks(title="Perbandingan Model Ringkasan Bahasa Indonesia") as demo:
|
| 145 |
+
gr.Markdown("# 📝 Perbandingan Model Ringkasan Bahasa Indonesia")
|
| 146 |
+
gr.Markdown("Masukkan teks asli Bahasa Indonesia dan pilih model yang ingin Anda gunakan. Opsional, berikan ringkasan referensi untuk evaluasi ROUGE.")
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
model_choice = gr.Radio(
|
| 150 |
+
choices=["cahya/t5-base-indonesian-summarization-cased", "gaduhhartawan/indobart-base-v2"],
|
| 151 |
+
label="Pilih Model Ringkasan",
|
| 152 |
+
value="cahya/t5-base-indonesian-summarization-cased" # Default pilihan
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
text_input = gr.Textbox(
|
| 157 |
+
label="Teks Asli (Bahasa Indonesia)",
|
| 158 |
+
placeholder="Masukkan teks panjang berbahasa Indonesia yang ingin Anda ringkas di sini...",
|
| 159 |
+
lines=10
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
min_length_slider = gr.Slider(
|
| 164 |
+
minimum=10,
|
| 165 |
+
maximum=100,
|
| 166 |
+
value=30,
|
| 167 |
+
step=1,
|
| 168 |
+
label="Panjang Ringkasan Minimum"
|
| 169 |
+
)
|
| 170 |
+
max_length_slider = gr.Slider(
|
| 171 |
+
minimum=50,
|
| 172 |
+
maximum=200,
|
| 173 |
+
value=80,
|
| 174 |
+
step=1,
|
| 175 |
+
label="Panjang Ringkasan Maksimum"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
reference_summary_input = gr.Textbox(
|
| 179 |
+
label="Ringkasan Referensi (Opsional untuk Evaluasi ROUGE)",
|
| 180 |
+
placeholder="Masukkan ringkasan yang dibuat manusia untuk teks ini (untuk perbandingan)",
|
| 181 |
+
lines=3
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
summarize_btn = gr.Button("✨ Ringkas & Evaluasi Sekarang")
|
| 185 |
+
|
| 186 |
+
status_output = gr.Markdown(label="Status Proses")
|
| 187 |
+
summary_output = gr.HTML(label="Hasil Ringkasan")
|
| 188 |
+
evaluation_output = gr.HTML(label="Hasil Evaluasi ROUGE")
|
| 189 |
+
|
| 190 |
+
download_btn = gr.File(label="Unduh Ringkasan", visible=False)
|
| 191 |
+
|
| 192 |
+
# Fungsi pembantu untuk tombol unduh
|
| 193 |
+
def update_download_button(summarized_text_content):
|
| 194 |
+
if summarized_text_content:
|
| 195 |
+
# Menggunakan io.BytesIO untuk membuat file di memori
|
| 196 |
+
# Encode ke utf-8 karena teks mungkin mengandung karakter non-ASCII
|
| 197 |
+
file_data = summarized_text_content.encode('utf-8')
|
| 198 |
+
return gr.File(value=file_data,
|
| 199 |
+
file_name="ringkasan_hasil.txt",
|
| 200 |
+
visible=True)
|
| 201 |
+
return gr.File(visible=False)
|
| 202 |
+
|
| 203 |
+
# Menghubungkan tombol ke fungsi ringkasan dan evaluasi
|
| 204 |
+
summarize_btn.click(
|
| 205 |
+
fn=summarize_and_evaluate,
|
| 206 |
+
inputs=[text_input, model_choice, min_length_slider, max_length_slider, reference_summary_input],
|
| 207 |
+
# Perhatikan outputs: summarized_text (ke-4) akan masuk ke input ke-4 dari lambda di .success
|
| 208 |
+
outputs=[status_output, summary_output, evaluation_output, gr.State()]
|
| 209 |
+
# gr.State() digunakan sebagai placeholder untuk summarized_text mentah yang akan diteruskan ke .success
|
| 210 |
+
).success(
|
| 211 |
+
# Lambda ini menerima 4 argumen: status, html_ringkasan, html_evaluasi, dan teks_ringkasan_mentah
|
| 212 |
+
fn=lambda s_out, h_out, e_out, text_raw: update_download_button(text_raw),
|
| 213 |
+
inputs=[status_output, summary_output, evaluation_output, gr.State()], # Input untuk lambda, mengambil output dari summarize_and_evaluate
|
| 214 |
+
outputs=download_btn
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
gr.Markdown("""
|
| 219 |
+
---
|
| 220 |
+
<div style='text-align: center; margin-top: 20px;'>
|
| 221 |
+
<p>Didukung oleh Hugging Face Transformers dan Gradio.</p>
|
| 222 |
+
<p>Model: <a href="https://huggingface.co/cahya/t5-base-indonesian-summarization-cased" target="_blank">cahya/t5-base-indonesian-summarization-cased</a> dan <a href="https://huggingface.co/gaduhhartawan/indobart-base-v2" target="_blank">gaduhhartawan/indobart-base-v2</a></p>
|
| 223 |
+
</div>
|
| 224 |
+
""")
|
| 225 |
+
|
| 226 |
+
#Run
|
| 227 |
+
if __name__ == "__main__":
|
| 228 |
+
demo.launch()
|