import gradio as gr from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np # Initialize more lightweight models summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1) # Use CPU sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') # Simple in-memory user storage (replace with proper database in production) users = {} def get_embedding(text): return sentence_model.encode(text) def calculate_job_match(job_description, user_data): job_embedding = get_embedding(job_description) user_embedding = get_embedding(user_data) similarity = cosine_similarity([job_embedding], [user_embedding])[0][0] return similarity def register(username, password, email): if username in users: return "Username already exists" users[username] = {"password": password, "email": email, "user_data": ""} return "Registered successfully" def login(username, password): if username not in users or users[username]["password"] != password: return "Invalid username or password" return "Logged in successfully" def update_profile(username, email, user_data): if username not in users: return "User not found" users[username]["email"] = email users[username]["user_data"] = user_data return "Profile updated successfully" def generate_text(prompt, max_length=150, min_length=50): summary = summarizer(prompt, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text'] return summary def generate_cv(username, job_description): if username not in users: return "User not found" user_data = users[username]["user_data"] match_score = calculate_job_match(job_description, user_data) prompt = f"Generate a CV based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" generated_cv = generate_text(prompt, max_length=300, min_length=100) return f"Generated CV:\n\n{generated_cv}\n\nJob Match Score: {match_score:.2f}" def generate_cover_letter(username, job_description): if username not in users: return "User not found" user_data = users[username]["user_data"] match_score = calculate_job_match(job_description, user_data) prompt = f"Generate a cover letter based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" cover_letter = generate_text(prompt, max_length=250, min_length=100) return f"Generated Cover Letter:\n\n{cover_letter}\n\nJob Match Score: {match_score:.2f}" def prepare_interview(username, job_description): if username not in users: return "User not found" user_data = users[username]["user_data"] match_score = calculate_job_match(job_description, user_data) prompt = f"Generate 5 potential interview questions based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" interview_questions = generate_text(prompt, max_length=200, min_length=100) return f"Potential Interview Questions:\n\n{interview_questions}\n\nJob Match Score: {match_score:.2f}" with gr.Blocks() as demo: gr.Markdown("# Advanced Personalized CV Generator") with gr.Tab("Register"): register_username = gr.Textbox(label="Username") register_password = gr.Textbox(label="Password", type="password") register_email = gr.Textbox(label="Email") register_button = gr.Button("Register") register_output = gr.Textbox(label="Output") register_button.click(register, inputs=[register_username, register_password, register_email], outputs=register_output) with gr.Tab("Login"): login_username = gr.Textbox(label="Username") login_password = gr.Textbox(label="Password", type="password") login_button = gr.Button("Login") login_output = gr.Textbox(label="Output") login_button.click(login, inputs=[login_username, login_password], outputs=login_output) with gr.Tab("Update Profile"): update_username = gr.Textbox(label="Username") update_email = gr.Textbox(label="Email") update_user_data = gr.Textbox(label="Professional Information") update_button = gr.Button("Update Profile") update_output = gr.Textbox(label="Output") update_button.click(update_profile, inputs=[update_username, update_email, update_user_data], outputs=update_output) with gr.Tab("Generate CV"): cv_username = gr.Textbox(label="Username") cv_job_description = gr.Textbox(label="Job Description") cv_button = gr.Button("Generate CV") cv_output = gr.Textbox(label="Generated CV") cv_button.click(generate_cv, inputs=[cv_username, cv_job_description], outputs=cv_output) with gr.Tab("Generate Cover Letter"): cl_username = gr.Textbox(label="Username") cl_job_description = gr.Textbox(label="Job Description") cl_button = gr.Button("Generate Cover Letter") cl_output = gr.Textbox(label="Generated Cover Letter") cl_button.click(generate_cover_letter, inputs=[cl_username, cl_job_description], outputs=cl_output) with gr.Tab("Prepare for Interview"): int_username = gr.Textbox(label="Username") int_job_description = gr.Textbox(label="Job Description") int_button = gr.Button("Generate Interview Questions") int_output = gr.Textbox(label="Interview Questions") int_button.click(prepare_interview, inputs=[int_username, int_job_description], outputs=int_output) demo.launch()