import streamlit as st import pandas as pd import joblib def run(): st.markdown("

Welcome to the Credit Default Prediction Model

", unsafe_allow_html=True) st.markdown("========================================================================================") st.markdown("

User Input Features

", unsafe_allow_html=True) def user_input(): limit_balance = st.number_input('limit balance', min_value=10000, max_value=100000000, step=10000) col1,col2= st.columns(2) pay_1 = col1.slider('pay in september', min_value=-12, max_value=12, format="paid %d month") pay_2 = col2.slider('pay in august', min_value=-12, max_value=12, format="paid %d month") pay_3 = col1.slider('pay in july', min_value=-12, max_value=12, format="paid %d month") pay_4 = col2.slider('pay in june', min_value=-12, max_value=12, format="paid %d month") pay_5 = col1.slider('pay in may', min_value=-12, max_value=12, format="paid %d month") pay_6 = col2.slider('pay in april', min_value=-12, max_value=12, format="paid %d month") data = { 'limit_balance': limit_balance, 'pay_0': pay_1, 'pay_2': pay_2, 'pay_3': pay_3, 'pay_4': pay_4, 'pay_5': pay_5, 'pay_6': pay_6 } features = pd.DataFrame(data, index=[0]) return features input = user_input() st.markdown("

User Input Result

", unsafe_allow_html=True) st.table(input) load_model = joblib.load("my_model.pkl") if st.button("Predict", help='Click me!' ): prediction = load_model.predict(input) if prediction == 1: prediction = 'Defaulted Payment' else: prediction = 'Not Defaulted' st.markdown("

Based on user input, the default model is predicted:

", unsafe_allow_html=True) st.markdown(f"

{prediction}

", unsafe_allow_html=True)