GC5 / app.py
Muhamadinsani17's picture
Update app.py
64835ed
raw
history blame
1.96 kB
import streamlit as st
import pandas as pd
import joblib
st.header('FTDS Model Deployment')
st.write("""
Created by FTDS Curriculum Team
Use the sidebar to select input features.
""")
st.sidebar.header('User Input Features')
def user_input():
limit_balance = st.sidebar.selectbox('limit_balance', [ 80000., 200000., 20000., 260000., 150000., 300000., 130000.,
500000., 230000., 460000., 780000., 170000., 320000., 290000.,
240000., 340000., 360000., 380000., 180000., 100000., 90000.,
50000., 160000., 70000., 280000., 220000., 30000., 120000.,
10000., 470000., 310000., 140000., 60000., 110000., 430000.,
210000., 490000., 330000., 250000., 400000., 370000., 440000.,
700000., 530000., 390000., 410000., 270000., 560000., 40000.,
680000., 480000., 190000., 350000., 420000., 510000., 800000.,
450000., 750000., 620000.])
pay_1 = st.sidebar.slider('pay_1', min_value=-12, max_value=12)
pay_2 = st.sidebar.slider('pay_2', min_value=-12, max_value=12)
pay_3 = st.sidebar.slider('pay_3', min_value=-12, max_value=12)
pay_4 = st.sidebar.slider('pay_4', min_value=-12, max_value=12)
pay_5 = st.sidebar.slider('pay_5', min_value=-12, max_value=12)
pay_6 = st.sidebar.slider('pay_6', min_value=-12, max_value=12)
data = {
'limit_balance': limit_balance,
'pay_0': pay_1,
'pay_2': pay_2,
'pay_3': pay_3,
'pay_4': pay_4,
'pay_5': pay_5,
'pay_6': pay_6
}
features = pd.DataFrame(data, index=[0])
return features
input = user_input()
st.subheader('User Input')
st.write(input)
load_model = joblib.load("my_model.pkl")
if st.button("Predict"):
prediction = load_model.predict(input)
if prediction == 1:
prediction = 'Defaulted Payment'
else:
prediction = 'Not Defaulted'
st.subheader('Based on user input, the placement model predicted: ')
st.header(prediction)