Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
|
7 |
+
class BenchmarkSystem:
|
8 |
+
def __init__(self):
|
9 |
+
self.results = {}
|
10 |
+
|
11 |
+
def run_benchmark(self,
|
12 |
+
model_name: str,
|
13 |
+
test_cases: List[str],
|
14 |
+
system_prompt: str = "") -> Dict[str, Any]:
|
15 |
+
"""
|
16 |
+
Run benchmark tests and measure performance metrics
|
17 |
+
"""
|
18 |
+
results = {
|
19 |
+
"model_name": model_name,
|
20 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
|
21 |
+
"total_tokens": 0,
|
22 |
+
"total_time": 0,
|
23 |
+
"responses": [],
|
24 |
+
"metrics": {}
|
25 |
+
}
|
26 |
+
|
27 |
+
start_time = time.time()
|
28 |
+
|
29 |
+
# Simulate processing test cases
|
30 |
+
for test in test_cases:
|
31 |
+
# Here you would add actual model inference
|
32 |
+
# This is a placeholder for demonstration
|
33 |
+
time.sleep(0.5) # Simulate processing time
|
34 |
+
results["responses"].append({
|
35 |
+
"input": test,
|
36 |
+
"output": f"Sample response for: {test}",
|
37 |
+
"tokens": len(test.split()),
|
38 |
+
"time": 0.5
|
39 |
+
})
|
40 |
+
|
41 |
+
results["total_time"] = time.time() - start_time
|
42 |
+
results["total_tokens"] = sum(r["tokens"] for r in results["responses"])
|
43 |
+
|
44 |
+
# Calculate aggregate metrics
|
45 |
+
results["metrics"] = {
|
46 |
+
"avg_response_time": results["total_time"] / len(test_cases),
|
47 |
+
"avg_tokens_per_response": results["total_tokens"] / len(test_cases)
|
48 |
+
}
|
49 |
+
|
50 |
+
self.results[model_name] = results
|
51 |
+
return results
|
52 |
+
|
53 |
+
def format_results(results: Dict[str, Any]) -> str:
|
54 |
+
"""Format benchmark results for display"""
|
55 |
+
output = f"Model: {results['model_name']}\n"
|
56 |
+
output += f"Timestamp: {results['timestamp']}\n"
|
57 |
+
output += f"Total Time: {results['total_time']:.2f}s\n"
|
58 |
+
output += f"Total Tokens: {results['total_tokens']}\n\n"
|
59 |
+
|
60 |
+
output += "Metrics:\n"
|
61 |
+
for metric, value in results["metrics"].items():
|
62 |
+
output += f"- {metric}: {value:.2f}\n"
|
63 |
+
|
64 |
+
return output
|
65 |
+
|
66 |
+
def save_results(results: Dict[str, Any], filename: str = "benchmark_results.json"):
|
67 |
+
"""Save benchmark results to a file"""
|
68 |
+
with open(filename, "w") as f:
|
69 |
+
json.dump(results, f, indent=2)
|
70 |
+
return f"Results saved to {filename}"
|
71 |
+
|
72 |
+
def run_benchmark_interface(model_name: str,
|
73 |
+
test_cases: str,
|
74 |
+
system_prompt: str) -> tuple[str, pd.DataFrame]:
|
75 |
+
"""
|
76 |
+
Gradio interface function for running benchmarks
|
77 |
+
"""
|
78 |
+
benchmark = BenchmarkSystem()
|
79 |
+
|
80 |
+
# Parse test cases (assuming one per line)
|
81 |
+
test_cases_list = [t.strip() for t in test_cases.split("\n") if t.strip()]
|
82 |
+
|
83 |
+
# Run benchmark
|
84 |
+
results = benchmark.run_benchmark(
|
85 |
+
model_name=model_name,
|
86 |
+
test_cases=test_cases_list,
|
87 |
+
system_prompt=system_prompt
|
88 |
+
)
|
89 |
+
|
90 |
+
# Create DataFrame for response details
|
91 |
+
df = pd.DataFrame([
|
92 |
+
{
|
93 |
+
"Input": r["input"],
|
94 |
+
"Output": r["output"],
|
95 |
+
"Tokens": r["tokens"],
|
96 |
+
"Time (s)": r["time"]
|
97 |
+
}
|
98 |
+
for r in results["responses"]
|
99 |
+
])
|
100 |
+
|
101 |
+
# Save results
|
102 |
+
save_results(results)
|
103 |
+
|
104 |
+
return format_results(results), df
|
105 |
+
|
106 |
+
# Create Gradio interface
|
107 |
+
with gr.Blocks(title="Model Benchmark Suite") as demo:
|
108 |
+
gr.Markdown("# Model Benchmark Suite")
|
109 |
+
gr.Markdown("Test and compare model performance across different scenarios")
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
model_name = gr.Textbox(
|
114 |
+
label="Model Name",
|
115 |
+
placeholder="Enter model name or identifier"
|
116 |
+
)
|
117 |
+
system_prompt = gr.Textbox(
|
118 |
+
label="System Prompt (Optional)",
|
119 |
+
placeholder="Enter system prompt if applicable",
|
120 |
+
lines=2
|
121 |
+
)
|
122 |
+
test_cases = gr.Textbox(
|
123 |
+
label="Test Cases",
|
124 |
+
placeholder="Enter test cases (one per line)",
|
125 |
+
lines=5
|
126 |
+
)
|
127 |
+
run_button = gr.Button("Run Benchmark")
|
128 |
+
|
129 |
+
with gr.Column():
|
130 |
+
results_text = gr.Textbox(
|
131 |
+
label="Benchmark Results",
|
132 |
+
lines=10,
|
133 |
+
readonly=True
|
134 |
+
)
|
135 |
+
results_table = gr.DataFrame(
|
136 |
+
label="Detailed Results",
|
137 |
+
headers=["Input", "Output", "Tokens", "Time (s)"]
|
138 |
+
)
|
139 |
+
|
140 |
+
run_button.click(
|
141 |
+
fn=run_benchmark_interface,
|
142 |
+
inputs=[model_name, test_cases, system_prompt],
|
143 |
+
outputs=[results_text, results_table]
|
144 |
+
)
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
demo.launch()
|