# Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from diffusers import DiffusionPipeline
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel
from diffusers.models.embeddings import (get_2d_rotary_pos_embed,
                                         get_3d_rotary_pos_embed)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import \
    StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, FlowMatchEulerDiscreteScheduler
from diffusers.utils import (BACKENDS_MAPPING, BaseOutput, deprecate,
                             is_bs4_available, is_ftfy_available,
                             is_torch_xla_available, logging,
                             replace_example_docstring)
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from PIL import Image
from tqdm import tqdm
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor,
                          Qwen2Tokenizer, Qwen2VLForConditionalGeneration, 
                          T5EncoderModel, T5Tokenizer)

from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
from .pipeline_easyanimate_inpaint import EasyAnimatePipelineOutput

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```python
        >>> import torch
        >>> from diffusers import EasyAnimatePipeline
        >>> from diffusers.utils import export_to_video

        >>> # Models: "alibaba-pai/EasyAnimateV5.1-12b-zh" or "alibaba-pai/EasyAnimateV5.1-7b-zh"
        >>> pipe = EasyAnimatePipeline.from_pretrained("alibaba-pai/EasyAnimateV5.1-7b-zh", torch_dtype=torch.float16).to("cuda")
        >>> prompt = (
        ...     "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
        ...     "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
        ...     "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
        ...     "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
        ...     "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
        ...     "atmosphere of this unique musical performance."
        ... )
        >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).sample[0]
        >>> export_to_video(video, "output.mp4", fps=8)
        ```
"""


# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
    tw = tgt_width
    th = tgt_height
    h, w = src
    r = h / w
    if r > (th / tw):
        resize_height = th
        resize_width = int(round(th / h * w))
    else:
        resize_width = tw
        resize_height = int(round(tw / w * h))

    crop_top = int(round((th - resize_height) / 2.0))
    crop_left = int(round((tw - resize_width) / 2.0))

    return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class EasyAnimatePipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-video generation using EasyAnimate.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
    EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
    HunyuanDiT team) in V5.

    Args:
        vae ([`AutoencoderKLMagvit`]):
            Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. 
        text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]):
            EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
            EasyAnimate uses [bilingual CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers) in V5.
        tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]):
            A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text.
        transformer ([`EasyAnimateTransformer3DModel`]):
            The EasyAnimate model designed by EasyAnimate Team.
        text_encoder_2 (`T5EncoderModel`):
            EasyAnimate does not use text_encoder_2 in V5.1.
            EasyAnimate uses [mT5](https://huggingface.co/google/mt5-base) embedder in V5.
        tokenizer_2 (`T5Tokenizer`):
            The tokenizer for the mT5 embedder.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = [
        "text_encoder_2",
        "tokenizer_2",
        "text_encoder",
        "tokenizer",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "prompt_embeds_2",
        "negative_prompt_embeds_2",
    ]

    def __init__(
        self,
        vae: AutoencoderKLMagvit,
        text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel],
        tokenizer: Union[Qwen2Tokenizer, BertTokenizer], 
        text_encoder_2: Optional[Union[T5EncoderModel, Qwen2VLForConditionalGeneration]],
        tokenizer_2: Optional[Union[T5Tokenizer, Qwen2Tokenizer]],
        transformer: EasyAnimateTransformer3DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def enable_sequential_cpu_offload(self, *args, **kwargs):
        super().enable_sequential_cpu_offload(*args, **kwargs)
        if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None:
            import accelerate
            accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True)
            self.transformer.clip_projection = self.transformer.clip_projection.to("cuda")

    def encode_prompt(
        self,
        prompt: str,
        device: torch.device,
        dtype: torch.dtype,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        max_sequence_length: Optional[int] = None,
        text_encoder_index: int = 0,
        actual_max_sequence_length: int = 256
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            dtype (`torch.dtype`):
                torch dtype
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            negative_prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
            text_encoder_index (`int`, *optional*):
                Index of the text encoder to use. `0` for clip and `1` for T5.
        """
        tokenizers = [self.tokenizer, self.tokenizer_2]
        text_encoders = [self.text_encoder, self.text_encoder_2]

        tokenizer = tokenizers[text_encoder_index]
        text_encoder = text_encoders[text_encoder_index]

        if max_sequence_length is None:
            if text_encoder_index == 0:
                max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length)
            if text_encoder_index == 1:
                max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length)
        else:
            max_length = max_sequence_length

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            if type(tokenizer) in [BertTokenizer, T5Tokenizer]:
                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_attention_mask=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids
                if text_input_ids.shape[-1] > actual_max_sequence_length:
                    reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
                    text_inputs = tokenizer(
                        reprompt,
                        padding="max_length",
                        max_length=max_length,
                        truncation=True,
                        return_attention_mask=True,
                        return_tensors="pt",
                    )
                    text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    _actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length)
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {_actual_max_sequence_length} tokens: {removed_text}"
                    )

                prompt_attention_mask = text_inputs.attention_mask.to(device)

                if self.transformer.config.enable_text_attention_mask:
                    prompt_embeds = text_encoder(
                        text_input_ids.to(device),
                        attention_mask=prompt_attention_mask,
                    )
                else:
                    prompt_embeds = text_encoder(
                        text_input_ids.to(device)
                    )
                prompt_embeds = prompt_embeds[0]
                prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
            else:
                if prompt is not None and isinstance(prompt, str):
                    messages = [
                        {
                            "role": "user",
                            "content": [{"type": "text", "text": prompt}],
                        }
                    ]
                else:
                    messages = [
                        {
                            "role": "user",
                            "content": [{"type": "text", "text": _prompt}],
                        } for _prompt in prompt
                    ]
                text = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )

                text_inputs = tokenizer(
                    text=[text],
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_attention_mask=True,
                    padding_side="right",
                    return_tensors="pt",
                )
                text_inputs = text_inputs.to(text_encoder.device)

                text_input_ids = text_inputs.input_ids
                prompt_attention_mask = text_inputs.attention_mask
                if self.transformer.config.enable_text_attention_mask:
                    # Inference: Generation of the output
                    prompt_embeds = text_encoder(
                        input_ids=text_input_ids,
                        attention_mask=prompt_attention_mask,
                        output_hidden_states=True).hidden_states[-2]
                else:
                    raise ValueError("LLM needs attention_mask")
                prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
        
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        prompt_attention_mask = prompt_attention_mask.to(device=device)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            if type(tokenizer) in [BertTokenizer, T5Tokenizer]:
                uncond_tokens: List[str]
                if negative_prompt is None:
                    uncond_tokens = [""] * batch_size
                elif prompt is not None and type(prompt) is not type(negative_prompt):
                    raise TypeError(
                        f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                        f" {type(prompt)}."
                    )
                elif isinstance(negative_prompt, str):
                    uncond_tokens = [negative_prompt]
                elif batch_size != len(negative_prompt):
                    raise ValueError(
                        f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                        f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                        " the batch size of `prompt`."
                    )
                else:
                    uncond_tokens = negative_prompt

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                uncond_input_ids = uncond_input.input_ids
                if uncond_input_ids.shape[-1] > actual_max_sequence_length:
                    reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
                    uncond_input = tokenizer(
                        reuncond_tokens,
                        padding="max_length",
                        max_length=max_length,
                        truncation=True,
                        return_attention_mask=True,
                        return_tensors="pt",
                    )
                    uncond_input_ids = uncond_input.input_ids

                negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
                if self.transformer.config.enable_text_attention_mask:
                    negative_prompt_embeds = text_encoder(
                        uncond_input.input_ids.to(device),
                        attention_mask=negative_prompt_attention_mask,
                    )
                else:
                    negative_prompt_embeds = text_encoder(
                        uncond_input.input_ids.to(device)
                    )
                negative_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
            else:
                if negative_prompt is not None and isinstance(negative_prompt, str):
                    messages = [
                        {
                            "role": "user",
                            "content": [{"type": "text", "text": negative_prompt}],
                        }
                    ]
                else:
                    messages = [
                        {
                            "role": "user",
                            "content": [{"type": "text", "text": _negative_prompt}],
                        } for _negative_prompt in negative_prompt
                    ]
                text = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )

                text_inputs = tokenizer(
                    text=[text],
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_attention_mask=True,
                    padding_side="right",
                    return_tensors="pt",
                )
                text_inputs = text_inputs.to(text_encoder.device)

                text_input_ids = text_inputs.input_ids
                negative_prompt_attention_mask = text_inputs.attention_mask
                if self.transformer.config.enable_text_attention_mask:
                    # Inference: Generation of the output
                    negative_prompt_embeds = text_encoder(
                        input_ids=text_input_ids,
                        attention_mask=negative_prompt_attention_mask,
                        output_hidden_states=True).hidden_states[-2]
                else:
                    raise ValueError("LLM needs attention_mask")
                negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device)
            
        return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        prompt_embeds_2=None,
        negative_prompt_embeds_2=None,
        prompt_attention_mask_2=None,
        negative_prompt_attention_mask_2=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is None and prompt_embeds_2 is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
            raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
            raise ValueError(
                "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
            )
        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
        if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
            if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
                raise ValueError(
                    "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
                    f" {negative_prompt_embeds_2.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
        if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
            if self.vae.cache_mag_vae:
                mini_batch_encoder = self.vae.mini_batch_encoder
                mini_batch_decoder = self.vae.mini_batch_decoder
                shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
            else:
                mini_batch_encoder = self.vae.mini_batch_encoder
                mini_batch_decoder = self.vae.mini_batch_decoder
                shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
        else:
            shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)
        
        # scale the initial noise by the standard deviation required by the scheduler
        if hasattr(self.scheduler, "init_noise_sigma"):
            latents = latents * self.scheduler.init_noise_sigma
        return latents

    def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder):
        if video.size()[2] <= mini_batch_encoder:
            return video
        prefix_index_before = mini_batch_encoder // 2
        prefix_index_after = mini_batch_encoder - prefix_index_before
        pixel_values = video[:, :, prefix_index_before:-prefix_index_after]

        # Encode middle videos
        latents = self.vae.encode(pixel_values)[0]
        latents = latents.mode()
        # Decode middle videos
        middle_video = self.vae.decode(latents)[0]

        video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2
        return video

    def decode_latents(self, latents):
        video_length = latents.shape[2]
        latents = 1 / self.vae.config.scaling_factor * latents
        if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
            mini_batch_encoder = self.vae.mini_batch_encoder
            mini_batch_decoder = self.vae.mini_batch_decoder
            video = self.vae.decode(latents)[0]
            video = video.clamp(-1, 1)
            if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae:
                video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1)
        else:
            latents = rearrange(latents, "b c f h w -> (b f) c h w")
            video = []
            for frame_idx in tqdm(range(latents.shape[0])):
                video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
            video = torch.cat(video)
            video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
        video = (video / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        video = video.cpu().float().numpy()
        return video

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        video_length: Optional[int] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_embeds_2: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds_2: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        prompt_attention_mask_2: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "latent",
        return_dict: bool = True,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = (1024, 1024),
        target_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        comfyui_progressbar: bool = False,
        timesteps: Optional[List[int]] = None,
    ):
        r"""
        Generates images or video using the EasyAnimate pipeline based on the provided prompts.

        Examples:
            prompt (`str` or `List[str]`, *optional*): 
                Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead.
            video_length (`int`, *optional*): 
                Length of the generated video (in frames).
            height (`int`, *optional*): 
                Height of the generated image in pixels.
            width (`int`, *optional*): 
                Width of the generated image in pixels.
            num_inference_steps (`int`, *optional*, defaults to 50): 
                Number of denoising steps during generation. More steps generally yield higher quality images but slow down inference.
            guidance_scale (`float`, *optional*, defaults to 5.0): 
                Encourages the model to align outputs with prompts. A higher value may decrease image quality.
            negative_prompt (`str` or `List[str]`, *optional*): 
                Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`.
            num_images_per_prompt (`int`, *optional*, defaults to 1): 
                Number of images to generate for each prompt.
            eta (`float`, *optional*, defaults to 0.0): 
                Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*): 
                A generator to ensure reproducibility in image generation.
            latents (`torch.Tensor`, *optional*): 
                Predefined latent tensors to condition generation.
            prompt_embeds (`torch.Tensor`, *optional*): 
                Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
            prompt_embeds_2 (`torch.Tensor`, *optional*): 
                Secondary text embeddings to supplement or replace the initial prompt embeddings.
            negative_prompt_embeds (`torch.Tensor`, *optional*): 
                Embeddings for negative prompts. Overrides string inputs if defined.
            negative_prompt_embeds_2 (`torch.Tensor`, *optional*): 
                Secondary embeddings for negative prompts, similar to `negative_prompt_embeds`.
            prompt_attention_mask (`torch.Tensor`, *optional*): 
                Attention mask for the primary prompt embeddings.
            prompt_attention_mask_2 (`torch.Tensor`, *optional*): 
                Attention mask for the secondary prompt embeddings.
            negative_prompt_attention_mask (`torch.Tensor`, *optional*): 
                Attention mask for negative prompt embeddings.
            negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): 
                Attention mask for secondary negative prompt embeddings.
            output_type (`str`, *optional*, defaults to "latent"): 
                Format of the generated output, either as a PIL image or as a NumPy array.
            return_dict (`bool`, *optional*, defaults to `True`): 
                If `True`, returns a structured output. Otherwise returns a simple tuple.
            callback_on_step_end (`Callable`, *optional*): 
                Functions called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*): 
                Tensor names to be included in callback function calls.
            guidance_rescale (`float`, *optional*, defaults to 0.0): 
                Adjusts noise levels based on guidance scale.
            original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): 
                Original dimensions of the output.
            target_size (`Tuple[int, int]`, *optional*): 
                Desired output dimensions for calculations.
            crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): 
                Coordinates for cropping.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. default height and width
        height = int((height // 16) * 16)
        width = int((width // 16) * 16)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.text_encoder_2 is not None:
            dtype = self.text_encoder_2.dtype
        else:
            dtype = self.transformer.dtype

        # 3. Encode input prompt
        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            device=device,
            dtype=dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            text_encoder_index=0,
        )
        if self.tokenizer_2 is not None:
            (
                prompt_embeds_2,
                negative_prompt_embeds_2,
                prompt_attention_mask_2,
                negative_prompt_attention_mask_2,
            ) = self.encode_prompt(
                prompt=prompt,
                device=device,
                dtype=dtype,
                num_images_per_prompt=num_images_per_prompt,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                negative_prompt=negative_prompt,
                prompt_embeds=prompt_embeds_2,
                negative_prompt_embeds=negative_prompt_embeds_2,
                prompt_attention_mask=prompt_attention_mask_2,
                negative_prompt_attention_mask=negative_prompt_attention_mask_2,
                text_encoder_index=1,
            )
        else:
            prompt_embeds_2 = None
            negative_prompt_embeds_2 = None
            prompt_attention_mask_2 = None
            negative_prompt_attention_mask_2 = None

        # 4. Prepare timesteps
        if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1)
        else:
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        if comfyui_progressbar:
            from comfy.utils import ProgressBar
            pbar = ProgressBar(num_inference_steps + 1)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            video_length,
            height,
            width,
            dtype,
            device,
            generator,
            latents,
        )
        if comfyui_progressbar:
            pbar.update(1)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7 create image_rotary_emb, style embedding & time ids
        grid_height = height // 8 // self.transformer.config.patch_size
        grid_width = width // 8 // self.transformer.config.patch_size
        if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope":
            base_size_width = 720 // 8 // self.transformer.config.patch_size
            base_size_height = 480 // 8 // self.transformer.config.patch_size

            grid_crops_coords = get_resize_crop_region_for_grid(
                (grid_height, grid_width), base_size_width, base_size_height
            )
            image_rotary_emb = get_3d_rotary_pos_embed(
                self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width),
                temporal_size=latents.size(2), use_real=True,
            )
        else:
            base_size = 512 // 8 // self.transformer.config.patch_size
            grid_crops_coords = get_resize_crop_region_for_grid(
                (grid_height, grid_width), base_size, base_size
            )
            image_rotary_emb = get_2d_rotary_pos_embed(
                self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width)
            )

        # Get other hunyuan params
        target_size = target_size or (height, width)
        add_time_ids = list(original_size + target_size + crops_coords_top_left)
        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        style = torch.tensor([0], device=device)

        if self.do_classifier_free_guidance:
            add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
            style = torch.cat([style] * 2, dim=0)

        # To latents.device
        add_time_ids = add_time_ids.to(dtype=dtype, device=device).repeat(
            batch_size * num_images_per_prompt, 1
        )
        style = style.to(device=device).repeat(batch_size * num_images_per_prompt)

        # Get other pixart params
        added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
        if self.transformer.config.get("sample_size", 64) == 128:
            resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
            aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
            resolution = resolution.to(dtype=dtype, device=device)
            aspect_ratio = aspect_ratio.to(dtype=dtype, device=device)

            if self.do_classifier_free_guidance:
                resolution = torch.cat([resolution, resolution], dim=0)
                aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)

            added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
            if prompt_embeds_2 is not None:
                prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
                prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])

        # To latents.device
        prompt_embeds = prompt_embeds.to(device=device)
        prompt_attention_mask = prompt_attention_mask.to(device=device)
        if prompt_embeds_2 is not None:
            prompt_embeds_2 = prompt_embeds_2.to(device=device)
            prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                if hasattr(self.scheduler, "scale_model_input"):
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
                t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
                    dtype=latent_model_input.dtype
                )

                # predict the noise residual
                noise_pred = self.transformer(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    text_embedding_mask=prompt_attention_mask,
                    encoder_hidden_states_t5=prompt_embeds_2,
                    text_embedding_mask_t5=prompt_attention_mask_2,
                    image_meta_size=add_time_ids,
                    style=style,
                    image_rotary_emb=image_rotary_emb,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]
                
                if noise_pred.size()[1] != self.vae.config.latent_channels:
                    noise_pred, _ = noise_pred.chunk(2, dim=1)

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
                    negative_prompt_embeds_2 = callback_outputs.pop(
                        "negative_prompt_embeds_2", negative_prompt_embeds_2
                    )

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

                if comfyui_progressbar:
                    pbar.update(1)

        # Post-processing
        video = self.decode_latents(latents)

        # Convert to tensor
        if output_type == "latent":
            video = torch.from_numpy(video)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return video

        return EasyAnimatePipelineOutput(frames=video)