from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr checkpoint = "Mr-Vicky-01/English-Tamil-Translator" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) def language_translator(text): tokenized = tokenizer([text], return_tensors='pt') out = model.generate(**tokenized, max_length=128) return tokenizer.decode(out[0],skip_special_tokens=True) # examples = [ # ["how are you today?"], # ["Translate this sentence into another language."], # ["how to play a game"], # ] demo = gr.Interface(fn=language_translator, inputs='text',outputs='text',title='English To Tamil Translator')#examples=examples) demo.launch(debug=True,share=True)