Spaces:
Sleeping
Sleeping
File size: 3,304 Bytes
e76c232 946c214 f5f42e8 946c214 f5f42e8 946c214 f5f42e8 03a8b15 f5f42e8 212b82b f5f42e8 19de6b1 e76c232 f5f42e8 e76c232 f5f42e8 e76c232 f5f42e8 e76c232 f5f42e8 f9ad6e4 e76c232 f9ad6e4 e76c232 f5f42e8 ed66b9d cbfa890 f5f42e8 e76c232 f5f42e8 e76c232 f5f42e8 e76c232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import streamlit as st
import os
from streamlit_chat import message
from PyPDF2 import PdfReader
import google.generativeai as genai
from langchain.prompts import PromptTemplate
from langchain import LLMChain
from langchain_google_genai import ChatGoogleGenerativeAI
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
llm = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.4)
template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan an AI Specialist.
provided document:
{provided_docs}
previous_chat:
{chat_history}
Human: {human_input}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "provided_docs"], template=template
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
)
previous_response = ""
provided_docs = ""
def conversational_chat(query):
global previous_response, provided_docs
for i in st.session_state['history']:
if i is not None:
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
docs = ""
for j in st.session_state["docs"]:
if j is not None:
docs += j
provided_docs = docs
result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs)
st.session_state['history'].append((query, result))
return result
st.title("Chat Bot:")
st.text("I am CRETA Your Friendly Assitant")
if 'history' not in st.session_state:
st.session_state['history'] = []
# Initialize messages
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello ! Ask me anything"]
if 'past' not in st.session_state:
st.session_state['past'] = [" "]
if 'docs' not in st.session_state:
st.session_state['docs'] = []
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
with st.sidebar:
st.title("Add a file for CRETA memory:")
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
st.session_state["docs"] += get_pdf_text(uploaded_file)
st.success("Done")
# Create containers for chat history and user input
response_container = st.container()
container = st.container()
# User input form
user_input = st.chat_input("Ask Your Questions π..")
with container:
if user_input:
output = conversational_chat(user_input)
# answer = response_generator(output)
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
# Display chat history
if st.session_state['generated']:
with response_container:
for i in range(len(st.session_state['generated'])):
if i != 0:
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts") |