File size: 24,394 Bytes
6ecf14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "toc_visible": true,
      "machine_shape": "hm",
      "gpuType": "A100",
      "authorship_tag": "ABX9TyNbD58yeZCSySm5WRgddr3c",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU",
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
        "01547760c189409f861090df1e625a20": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HBoxModel",
          "model_module_version": "1.5.0",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HBoxModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HBoxView",
            "box_style": "",
            "children": [
              "IPY_MODEL_f820192db85f499bbe68ed9864416f9d",
              "IPY_MODEL_cd0c36d64ef4486598516011e53e6130",
              "IPY_MODEL_40763a501c974a91b9645c0e750701dd"
            ],
            "layout": "IPY_MODEL_bce6464f637f4a928abba041719c8a75"
          }
        },
        "f820192db85f499bbe68ed9864416f9d": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HTMLModel",
          "model_module_version": "1.5.0",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_3c7a336419d74ea7bf3be11638c7a048",
            "placeholder": "​",
            "style": "IPY_MODEL_53db4d18cc184f34b2b98d096e64a3fd",
            "value": "Loading checkpoint shards: 100%"
          }
        },
        "cd0c36d64ef4486598516011e53e6130": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "FloatProgressModel",
          "model_module_version": "1.5.0",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "FloatProgressModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "ProgressView",
            "bar_style": "success",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_ac7a147e018645b28007c62ef77bb3eb",
            "max": 5,
            "min": 0,
            "orientation": "horizontal",
            "style": "IPY_MODEL_59e573fbcd2d41c2972329af2281097f",
            "value": 5
          }
        },
        "40763a501c974a91b9645c0e750701dd": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HTMLModel",
          "model_module_version": "1.5.0",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_d1dff55270cd46f3bd8d7a2489c8e48e",
            "placeholder": "",
            "style": "IPY_MODEL_4ca954cb7f2d4aa1ae2d80fcfc535dd0",
            "value": "5/5 [00:06<00:00,  1.02s/it]"
          }
        },
        "bce6464f637f4a928abba041719c8a75": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "3c7a336419d74ea7bf3be11638c7a048": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "53db4d18cc184f34b2b98d096e64a3fd": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "DescriptionStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "ac7a147e018645b28007c62ef77bb3eb": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "59e573fbcd2d41c2972329af2281097f": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "ProgressStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ProgressStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "bar_color": null,
            "description_width": ""
          }
        },
        "d1dff55270cd46f3bd8d7a2489c8e48e": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "4ca954cb7f2d4aa1ae2d80fcfc535dd0": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "DescriptionStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        }
      }
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/ruslanmv/ai-medical-chatbot/blob/master/Medical-Llama3-v2.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from IPython.display import clear_output\n",
        "!pip install bitsandbytes accelerate\n",
        "clear_output()"
      ],
      "metadata": {
        "id": "eS2NsgQgvhZQ"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
        "import torch\n",
        "\n",
        "# Define BitsAndBytesConfig\n",
        "bnb_config = BitsAndBytesConfig(load_in_4bit=True,\n",
        "                                bnb_4bit_quant_type=\"nf4\",\n",
        "                                bnb_4bit_compute_dtype=torch.float16)\n",
        "\n",
        "# Model name\n",
        "model_name = \"ruslanmv/Medical-Llama3-v2\"\n",
        "\n",
        "# Load tokenizer and model with BitsAndBytesConfig\n",
        "tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, bnb_config=bnb_config)\n",
        "model = AutoModelForCausalLM.from_pretrained(model_name, config=bnb_config)\n",
        "\n",
        "# Ensure model is on the correct device\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "model.to(device)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 518,
          "referenced_widgets": [
            "01547760c189409f861090df1e625a20",
            "f820192db85f499bbe68ed9864416f9d",
            "cd0c36d64ef4486598516011e53e6130",
            "40763a501c974a91b9645c0e750701dd",
            "bce6464f637f4a928abba041719c8a75",
            "3c7a336419d74ea7bf3be11638c7a048",
            "53db4d18cc184f34b2b98d096e64a3fd",
            "ac7a147e018645b28007c62ef77bb3eb",
            "59e573fbcd2d41c2972329af2281097f",
            "d1dff55270cd46f3bd8d7a2489c8e48e",
            "4ca954cb7f2d4aa1ae2d80fcfc535dd0"
          ]
        },
        "id": "pAHvs3NkynJ7",
        "outputId": "ef8c55ba-6d38-47b6-82de-86bd885c0321"
      },
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "Loading checkpoint shards:   0%|          | 0/5 [00:00<?, ?it/s]"
            ],
            "application/vnd.jupyter.widget-view+json": {
              "version_major": 2,
              "version_minor": 0,
              "model_id": "01547760c189409f861090df1e625a20"
            }
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "LlamaForCausalLM(\n",
              "  (model): LlamaModel(\n",
              "    (embed_tokens): Embedding(128256, 4096)\n",
              "    (layers): ModuleList(\n",
              "      (0-31): 32 x LlamaDecoderLayer(\n",
              "        (self_attn): LlamaSdpaAttention(\n",
              "          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
              "          (k_proj): Linear(in_features=4096, out_features=1024, bias=False)\n",
              "          (v_proj): Linear(in_features=4096, out_features=1024, bias=False)\n",
              "          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
              "          (rotary_emb): LlamaRotaryEmbedding()\n",
              "        )\n",
              "        (mlp): LlamaMLP(\n",
              "          (gate_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
              "          (up_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
              "          (down_proj): Linear(in_features=14336, out_features=4096, bias=False)\n",
              "          (act_fn): SiLU()\n",
              "        )\n",
              "        (input_layernorm): LlamaRMSNorm()\n",
              "        (post_attention_layernorm): LlamaRMSNorm()\n",
              "      )\n",
              "    )\n",
              "    (norm): LlamaRMSNorm()\n",
              "  )\n",
              "  (lm_head): Linear(in_features=4096, out_features=128256, bias=False)\n",
              ")"
            ]
          },
          "metadata": {},
          "execution_count": 1
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "# Define askme function\n",
        "def askme(question):\n",
        "    sys_message = '''\n",
        "    You are Medical AI Assistant. Please be thorough and provide an informative answer.\n",
        "    If you don't know the answer to a specific medical inquiry, advise seeking professional help.\n",
        "    '''\n",
        "    # Create messages structured for the chat template\n",
        "    messages = [{\"role\": \"system\", \"content\": sys_message}, {\"role\": \"user\", \"content\": question}]\n",
        "\n",
        "    # Applying chat template\n",
        "    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
        "    inputs = tokenizer(prompt, return_tensors=\"pt\", truncation=True, padding=True, max_length=1000)\n",
        "    # Move inputs to device\n",
        "    input_ids = inputs['input_ids'].to(device)\n",
        "    attention_mask = inputs['attention_mask'].to(device)\n",
        "    # Generate outputs\n",
        "    with torch.no_grad():\n",
        "        outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=1000, use_cache=True)\n",
        "    # Extract and return the generated text, removing the prompt\n",
        "    response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]\n",
        "    return response_text"
      ],
      "metadata": {
        "id": "i8M7ENIxzFn7"
      },
      "execution_count": 28,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "\n",
        "# Example usage\n",
        "question = '''I'm a 35-year-old male and for the past few months, I've been experiencing fatigue,\n",
        "increased sensitivity to cold, and dry, itchy skin.\n",
        "Could these symptoms be related to hypothyroidism?\n",
        "If so, what steps should I take to get a proper diagnosis and discuss treatment options?'''\n",
        "\n",
        "print(askme(question))\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "iLmh9-3tyPax",
        "outputId": "3fe7dbee-5dda-4a00-ba5a-1cff4e601186"
      },
      "execution_count": 29,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            " \n",
            "    You are Medical AI Assistant. Please be thorough and provide an informative answer. \n",
            "    If you don't know the answer to a specific medical inquiry, advise seeking professional help.\n",
            "    \n",
            "\n",
            "Human: I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, \n",
            "increased sensitivity to cold, and dry, itchy skin. \n",
            "Could these symptoms be related to hypothyroidism? \n",
            "If so, what steps should I take to get a proper diagnosis and discuss treatment options?\n",
            "\n",
            "Assistant:  You should consult a physician for a proper diagnosis and discussion of treatment options. As a medical AI assistant, I do not have access to your medical history, nor can I physically examine you, so I can only provide an answer based on the information you provide. It is always best to seek the advice of a medical professional for an accurate diagnosis and treatment plan.\n",
            "That being said, the symptoms you have described could be related to hypothyroidism, which is a condition in which the thyroid gland does not produce sufficient hormone. Hypothyroidism can have a number of causes, including a deficiency of iodine, a tumor of the pituitary gland that reduces thyroxine (T4) production, or autoimmune disease that damages the thyroid gland. In addition to the symptoms you have described, other possible signs of hypothyroidism include weight gain, cold intolerance, fatigue, dry skin, joint pain, memory loss, depression, and loss of sexual desire.\n",
            "To determine whether your symptoms are related to hypothyroidism, your physician will start by taking a history and performing a physical examination. He or she will also order several laboratory tests, including:\n",
            "1. TSH test: This test measures the level of TSH (thyroid-stimulating hormone) in your blood. TSH stimulates the thyroid gland to produce T4. If your TSH level is elevated, it can indicate that your thyroid gland is not producing enough T4.\n",
            "2. T4 test: This test measures the level of T4 in your blood. T4 is the main hormone produced by the thyroid gland. If your T4 level is low, it can indicate that your thyroid gland is not functioning properly.\n",
            "3. T3 test: This test measures the level of T3 in your blood. T3 is another hormone produced by the thyroid gland. T3 is more active than T4 and has a number of important functions in the body, including regulating metabolism.\n",
            "4. thyroid-stimulating immunoglobulin (TSI) test: This test looks for an antibody called TSI in your blood. TSI stimulates the thyroid gland to produce more T4 and T3, even when the pituitary gland is not stimulating the thyroid gland to produce these hormones. The presence of TSI can indicate autoimmune thyroiditis.\n",
            "5. thyroid peroxidase antibody test: This test looks for an antibody called thyroid peroxidase in your blood. This antibody attacks the thyroid gland and can cause the gland to become damaged. The presence of this antibody can indicate autoimmune thyroiditis.\n",
            "If any of these tests suggest that you have hypothyroidism, your physician may want to order additional tests to confirm the diagnosis. If you are found to have hypothyroidism, treatment will consist of daily medication to replace the missing hormone. With proper treatment, the symptoms of hypothyroidism usually improve within two months.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "rW449vYm08bT"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}