File size: 1,889 Bytes
1341b77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0744724
 
 
 
1341b77
 
 
 
18c9df7
 
1341b77
 
 
18c9df7
 
63e2fd7
18c9df7
 
 
 
1341b77
 
 
18c9df7
 
 
 
 
1341b77
18c9df7
 
1341b77
 
036dd8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import torch
from torch import tensor
from torch.nn import functional as F
from sklearn.preprocessing import LabelEncoder
import pandas as pd

label_encoder = LabelEncoder()

coeffs = torch.load('fakejobposts.pth')

indep_cols = ['job_title', 'company_name', 'company_desc', 'job_desc',
              'job_requirement', 'salary', 'location', 'employment_type',
              'department']

def calc_preds(coeffs, indeps):
    layers, consts = coeffs
    n = len(layers)
    res = indeps
    for i, l in enumerate(layers):
        res = res @ l + consts[i]
        if i != n-1:
            res = F.relu(res)
    if torch.sigmoid(res) > 0.5:
        return 'Real Job Post'
    else:
        return 'Fake Job Post'

def main(job_title, company_name, company_desc, job_desc,
              job_requirement, salary, location, employment_type,
              department):
    df = pd.DataFrame(columns=indep_cols)
    df.loc[0] = [job_title, company_name, company_desc, job_desc,
              job_requirement, salary, location, employment_type,
              department]

    for column in df.columns:
        df[column] = label_encoder.fit_transform(df[column])

    t_indep = tensor(df[indep_cols].values, dtype=torch.float)
    vals,indices = t_indep.max(dim=0)
    t_indep = t_indep / vals
    return calc_preds(coeffs, t_indep)

iface = gr.Interface(
    fn=main,
    inputs=[gr.Textbox(label="Job title"), gr.Textbox(label="Company name"),
            gr.Textbox(label="Company description"), gr.Textbox(label="Job description"),
            gr.Textbox(label="Job Requirements"), gr.Textbox(label="Salary"),
            gr.Textbox(label="Location"), gr.Textbox(label="Employment Type"),
            gr.Textbox(label="Department")],
    outputs="text",
    title="Job posting identifier",
    description="Identifies job posts as real or fake"
)

iface.launch(share=True)