Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Tranception Design App - Hugging Face Spaces Version
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import torch
|
| 8 |
+
import transformers
|
| 9 |
+
from transformers import PreTrainedTokenizerFast
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
import zipfile
|
| 17 |
+
import shutil
|
| 18 |
+
|
| 19 |
+
# Add current directory to path
|
| 20 |
+
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
| 21 |
+
|
| 22 |
+
# Check if we need to download and extract the tranception module
|
| 23 |
+
if not os.path.exists("tranception"):
|
| 24 |
+
print("Downloading Tranception repository...")
|
| 25 |
+
# Clone the repository structure
|
| 26 |
+
os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception")
|
| 27 |
+
# Move the tranception module to current directory
|
| 28 |
+
shutil.move("temp_tranception/tranception", "tranception")
|
| 29 |
+
# Clean up
|
| 30 |
+
shutil.rmtree("temp_tranception")
|
| 31 |
+
|
| 32 |
+
import tranception
|
| 33 |
+
from tranception import config, model_pytorch
|
| 34 |
+
|
| 35 |
+
# Download model checkpoints if not present
|
| 36 |
+
def download_model_from_hf(model_name):
|
| 37 |
+
"""Download model from Hugging Face Hub if not present locally"""
|
| 38 |
+
model_path = f"./{model_name}"
|
| 39 |
+
if not os.path.exists(model_path):
|
| 40 |
+
print(f"Downloading {model_name} model...")
|
| 41 |
+
try:
|
| 42 |
+
# For Small and Medium models, they are available on HF Hub
|
| 43 |
+
if model_name in ["Tranception_Small", "Tranception_Medium"]:
|
| 44 |
+
return f"PascalNotin/{model_name}"
|
| 45 |
+
else:
|
| 46 |
+
# For Large model, we need to download from the original source
|
| 47 |
+
print("Note: Large model needs to be downloaded from the original source.")
|
| 48 |
+
print("Using Medium model as fallback...")
|
| 49 |
+
return "PascalNotin/Tranception_Medium"
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error downloading {model_name}: {e}")
|
| 52 |
+
return None
|
| 53 |
+
return model_path
|
| 54 |
+
|
| 55 |
+
AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
|
| 56 |
+
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
|
| 57 |
+
unk_token="[UNK]",
|
| 58 |
+
sep_token="[SEP]",
|
| 59 |
+
pad_token="[PAD]",
|
| 60 |
+
cls_token="[CLS]",
|
| 61 |
+
mask_token="[MASK]"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
|
| 65 |
+
all_single_mutants={}
|
| 66 |
+
sequence_list=list(sequence)
|
| 67 |
+
if mutation_range_start is None: mutation_range_start=1
|
| 68 |
+
if mutation_range_end is None: mutation_range_end=len(sequence)
|
| 69 |
+
for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
|
| 70 |
+
for mutated_AA in AA_vocab:
|
| 71 |
+
if current_AA!=mutated_AA:
|
| 72 |
+
mutated_sequence = sequence_list.copy()
|
| 73 |
+
mutated_sequence[mutation_range_start + position - 1] = mutated_AA
|
| 74 |
+
all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence)
|
| 75 |
+
all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
|
| 76 |
+
all_single_mutants.reset_index(inplace=True)
|
| 77 |
+
all_single_mutants.columns = ['mutant','mutated_sequence']
|
| 78 |
+
return all_single_mutants
|
| 79 |
+
|
| 80 |
+
def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20):
|
| 81 |
+
filtered_scores=scores.copy()
|
| 82 |
+
filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
|
| 83 |
+
piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
|
| 84 |
+
|
| 85 |
+
# Save CSV file
|
| 86 |
+
csv_path = 'fitness_scoring_substitution_matrix_{}.csv'.format(image_index)
|
| 87 |
+
|
| 88 |
+
# Create a more detailed CSV with mutation info
|
| 89 |
+
csv_data = []
|
| 90 |
+
for position in range(mutation_range_start,mutation_range_end+1):
|
| 91 |
+
for target_AA in list(AA_vocab):
|
| 92 |
+
mutant = sequence[position-1]+str(position)+target_AA
|
| 93 |
+
if mutant in set(filtered_scores.mutant):
|
| 94 |
+
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
|
| 95 |
+
if isinstance(score_value, pd.Series):
|
| 96 |
+
score = float(score_value.iloc[0])
|
| 97 |
+
else:
|
| 98 |
+
score = float(score_value)
|
| 99 |
+
else:
|
| 100 |
+
score = 0.0
|
| 101 |
+
|
| 102 |
+
csv_data.append({
|
| 103 |
+
'position': position,
|
| 104 |
+
'original_AA': sequence[position-1],
|
| 105 |
+
'target_AA': target_AA,
|
| 106 |
+
'mutation': mutant,
|
| 107 |
+
'fitness_score': score
|
| 108 |
+
})
|
| 109 |
+
|
| 110 |
+
csv_df = pd.DataFrame(csv_data)
|
| 111 |
+
csv_df.to_csv(csv_path, index=False)
|
| 112 |
+
|
| 113 |
+
# Continue with visualization
|
| 114 |
+
mutation_range_len = mutation_range_end - mutation_range_start + 1
|
| 115 |
+
fig, ax = plt.subplots(figsize=(50,mutation_range_len))
|
| 116 |
+
scores_dict = {}
|
| 117 |
+
valid_mutant_set=set(filtered_scores.mutant)
|
| 118 |
+
ax.tick_params(bottom=True, top=True, left=True, right=True)
|
| 119 |
+
ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
|
| 120 |
+
if annotate:
|
| 121 |
+
for position in range(mutation_range_start,mutation_range_end+1):
|
| 122 |
+
for target_AA in list(AA_vocab):
|
| 123 |
+
mutant = sequence[position-1]+str(position)+target_AA
|
| 124 |
+
if mutant in valid_mutant_set:
|
| 125 |
+
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
|
| 126 |
+
if isinstance(score_value, pd.Series):
|
| 127 |
+
scores_dict[mutant] = float(score_value.iloc[0])
|
| 128 |
+
else:
|
| 129 |
+
scores_dict[mutant] = float(score_value)
|
| 130 |
+
else:
|
| 131 |
+
scores_dict[mutant]=0.0
|
| 132 |
+
labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
|
| 133 |
+
heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
|
| 134 |
+
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
|
| 135 |
+
else:
|
| 136 |
+
heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
|
| 137 |
+
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
|
| 138 |
+
heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
|
| 139 |
+
heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
|
| 140 |
+
heat.set_ylabel("Sequence position", fontsize = fontsize*2)
|
| 141 |
+
heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
|
| 142 |
+
|
| 143 |
+
# Set y-axis labels (positions)
|
| 144 |
+
yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
|
| 145 |
+
heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0)
|
| 146 |
+
|
| 147 |
+
# Set x-axis labels (amino acids) - ensuring correct number
|
| 148 |
+
heat.set_xticklabels(list(AA_vocab), fontsize=fontsize)
|
| 149 |
+
plt.tight_layout()
|
| 150 |
+
image_path = 'fitness_scoring_substitution_matrix_{}.png'.format(image_index)
|
| 151 |
+
plt.savefig(image_path,dpi=100)
|
| 152 |
+
plt.close()
|
| 153 |
+
return image_path, csv_path
|
| 154 |
+
|
| 155 |
+
def suggest_mutations(scores):
|
| 156 |
+
intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
|
| 157 |
+
#Best mutants
|
| 158 |
+
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
|
| 159 |
+
top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
|
| 160 |
+
top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
|
| 161 |
+
mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
|
| 162 |
+
#Best positions
|
| 163 |
+
positive_scores = scores[scores.avg_score > 0]
|
| 164 |
+
if len(positive_scores) > 0:
|
| 165 |
+
# Only select numeric columns for groupby mean
|
| 166 |
+
positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index()
|
| 167 |
+
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str))
|
| 168 |
+
position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
|
| 169 |
+
else:
|
| 170 |
+
position_recos = "No positions with positive fitness effects found."
|
| 171 |
+
return intro_message+mutant_recos+position_recos
|
| 172 |
+
|
| 173 |
+
def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
|
| 174 |
+
valid = True
|
| 175 |
+
try:
|
| 176 |
+
from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
|
| 177 |
+
except:
|
| 178 |
+
valid = False
|
| 179 |
+
if valid and position > 0 and position <= len(sequence):
|
| 180 |
+
if sequence[position-1]!=from_AA: valid=False
|
| 181 |
+
else:
|
| 182 |
+
valid = False
|
| 183 |
+
if to_AA not in AA_vocab: valid=False
|
| 184 |
+
return valid
|
| 185 |
+
|
| 186 |
+
def get_mutated_protein(sequence,mutant):
|
| 187 |
+
if not check_valid_mutant(sequence,mutant):
|
| 188 |
+
return "The mutant is not valid"
|
| 189 |
+
mutated_sequence = list(sequence)
|
| 190 |
+
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
|
| 191 |
+
return ''.join(mutated_sequence)
|
| 192 |
+
|
| 193 |
+
def score_and_create_matrix_all_singles(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Small",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
|
| 194 |
+
if mutation_range_start is None: mutation_range_start=1
|
| 195 |
+
if mutation_range_end is None: mutation_range_end=len(sequence)
|
| 196 |
+
|
| 197 |
+
# Clean sequence
|
| 198 |
+
sequence = sequence.strip().upper()
|
| 199 |
+
|
| 200 |
+
# Validate
|
| 201 |
+
assert len(sequence) > 0, "no sequence entered"
|
| 202 |
+
assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
|
| 203 |
+
assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})"
|
| 204 |
+
|
| 205 |
+
# Load model with HF Space compatibility
|
| 206 |
+
if model_type=="Small":
|
| 207 |
+
model_path = download_model_from_hf("Tranception_Small")
|
| 208 |
+
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
|
| 209 |
+
elif model_type=="Medium":
|
| 210 |
+
model_path = download_model_from_hf("Tranception_Medium")
|
| 211 |
+
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
|
| 212 |
+
elif model_type=="Large":
|
| 213 |
+
# For HF Spaces, we recommend using Medium model due to memory constraints
|
| 214 |
+
print("Note: Large model requires significant memory. Using Medium model for HF Spaces deployment.")
|
| 215 |
+
model_path = download_model_from_hf("Tranception_Medium")
|
| 216 |
+
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
|
| 217 |
+
|
| 218 |
+
# Device selection - for HF Spaces, typically CPU
|
| 219 |
+
if torch.cuda.is_available():
|
| 220 |
+
device = torch.device("cuda")
|
| 221 |
+
model.cuda()
|
| 222 |
+
print("Inference will take place on NVIDIA GPU")
|
| 223 |
+
else:
|
| 224 |
+
device = torch.device("cpu")
|
| 225 |
+
model.to(device)
|
| 226 |
+
print("Inference will take place on CPU")
|
| 227 |
+
# Reduce batch size for CPU inference
|
| 228 |
+
batch_size_inference = min(batch_size_inference, 10)
|
| 229 |
+
|
| 230 |
+
model.eval()
|
| 231 |
+
model.config.tokenizer = tokenizer
|
| 232 |
+
|
| 233 |
+
all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
|
| 234 |
+
|
| 235 |
+
with torch.no_grad():
|
| 236 |
+
scores = model.score_mutants(DMS_data=all_single_mutants,
|
| 237 |
+
target_seq=sequence,
|
| 238 |
+
scoring_mirror=scoring_mirror,
|
| 239 |
+
batch_size_inference=batch_size_inference,
|
| 240 |
+
num_workers=num_workers,
|
| 241 |
+
indel_mode=False
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
|
| 245 |
+
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
|
| 246 |
+
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
|
| 247 |
+
|
| 248 |
+
score_heatmaps = []
|
| 249 |
+
csv_files = []
|
| 250 |
+
mutation_range = mutation_range_end - mutation_range_start + 1
|
| 251 |
+
number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
|
| 252 |
+
image_index = 0
|
| 253 |
+
window_start = mutation_range_start
|
| 254 |
+
window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
|
| 255 |
+
|
| 256 |
+
for image_index in range(number_heatmaps):
|
| 257 |
+
image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab)
|
| 258 |
+
score_heatmaps.append(image_path)
|
| 259 |
+
csv_files.append(csv_path)
|
| 260 |
+
window_start += max_number_positions_per_heatmap
|
| 261 |
+
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
|
| 262 |
+
|
| 263 |
+
# Also save a comprehensive CSV with all mutations
|
| 264 |
+
comprehensive_csv_path = 'all_mutations_fitness_scores.csv'
|
| 265 |
+
scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy()
|
| 266 |
+
scores_export['original_AA'] = scores_export['mutant'].str[0]
|
| 267 |
+
scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'})
|
| 268 |
+
scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']]
|
| 269 |
+
scores_export.to_csv(comprehensive_csv_path, index=False)
|
| 270 |
+
csv_files.append(comprehensive_csv_path)
|
| 271 |
+
|
| 272 |
+
return score_heatmaps, suggest_mutations(scores), csv_files
|
| 273 |
+
|
| 274 |
+
def extract_sequence(example):
|
| 275 |
+
label, taxon, sequence = example
|
| 276 |
+
return sequence
|
| 277 |
+
|
| 278 |
+
def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
|
| 279 |
+
protein_sequence_input = ""
|
| 280 |
+
mutation_range_start = None
|
| 281 |
+
mutation_range_end = None
|
| 282 |
+
return protein_sequence_input,mutation_range_start,mutation_range_end
|
| 283 |
+
|
| 284 |
+
# Create Gradio app
|
| 285 |
+
tranception_design = gr.Blocks()
|
| 286 |
+
|
| 287 |
+
with tranception_design:
|
| 288 |
+
gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
|
| 289 |
+
gr.Markdown("## 🧬 Hugging Face Spaces Demo")
|
| 290 |
+
gr.Markdown("Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
|
| 291 |
+
gr.Markdown("**Note**: This demo runs on CPU in Hugging Face Spaces. For faster inference, consider using GPU locally or selecting the Small model.")
|
| 292 |
+
|
| 293 |
+
with gr.Tabs():
|
| 294 |
+
with gr.TabItem("Input"):
|
| 295 |
+
with gr.Row():
|
| 296 |
+
protein_sequence_input = gr.Textbox(lines=1,
|
| 297 |
+
label="Protein sequence",
|
| 298 |
+
placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
with gr.Row():
|
| 302 |
+
mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
|
| 303 |
+
mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)
|
| 304 |
+
|
| 305 |
+
with gr.TabItem("Parameters"):
|
| 306 |
+
with gr.Row():
|
| 307 |
+
model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)",
|
| 308 |
+
choices=["Small","Medium","Large"],
|
| 309 |
+
value="Small")
|
| 310 |
+
with gr.Row():
|
| 311 |
+
scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
|
| 312 |
+
with gr.Row():
|
| 313 |
+
batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0)
|
| 314 |
+
with gr.Row():
|
| 315 |
+
gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
|
| 316 |
+
|
| 317 |
+
with gr.Row():
|
| 318 |
+
clear_button = gr.Button(value="Clear",variant="secondary")
|
| 319 |
+
run_button = gr.Button(value="Predict fitness",variant="primary")
|
| 320 |
+
|
| 321 |
+
protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
|
| 322 |
+
taxon = gr.Textbox(label="Taxon", visible=False)
|
| 323 |
+
|
| 324 |
+
examples = gr.Examples(
|
| 325 |
+
inputs=[protein_ID, taxon, protein_sequence_input],
|
| 326 |
+
outputs=[protein_sequence_input],
|
| 327 |
+
fn=extract_sequence,
|
| 328 |
+
examples=[
|
| 329 |
+
['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
|
| 330 |
+
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
|
| 331 |
+
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
|
| 332 |
+
['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
|
| 333 |
+
['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
|
| 334 |
+
['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
|
| 335 |
+
['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
|
| 336 |
+
['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
|
| 337 |
+
['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
|
| 338 |
+
],
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
gr.Markdown("<br>")
|
| 342 |
+
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
|
| 343 |
+
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
|
| 344 |
+
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images
|
| 345 |
+
|
| 346 |
+
output_recommendations = gr.Textbox(label="Mutation recommendations")
|
| 347 |
+
|
| 348 |
+
with gr.Row():
|
| 349 |
+
gr.Markdown("## Download CSV Files")
|
| 350 |
+
output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False)
|
| 351 |
+
|
| 352 |
+
clear_button.click(
|
| 353 |
+
inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
|
| 354 |
+
outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
|
| 355 |
+
fn=clear_inputs
|
| 356 |
+
)
|
| 357 |
+
run_button.click(
|
| 358 |
+
fn=score_and_create_matrix_all_singles,
|
| 359 |
+
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
|
| 360 |
+
outputs=[output_image,output_recommendations,output_csv_files],
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
gr.Markdown("# Mutate the starting protein sequence")
|
| 364 |
+
with gr.Row():
|
| 365 |
+
mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
|
| 366 |
+
mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
|
| 367 |
+
mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
|
| 368 |
+
mutate_button.click(
|
| 369 |
+
fn = get_mutated_protein,
|
| 370 |
+
inputs = [protein_sequence_input,mutation_triplet],
|
| 371 |
+
outputs = mutated_protein_sequence
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
|
| 375 |
+
gr.Markdown("For more information about the Tranception model, please refer to our paper below:")
|
| 376 |
+
gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
|
| 377 |
+
gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a> <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a> <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>")
|
| 378 |
+
|
| 379 |
+
if __name__ == "__main__":
|
| 380 |
+
tranception_design.queue()
|
| 381 |
+
tranception_design.launch()
|