File size: 3,018 Bytes
f5a396a
 
 
ac462f6
717fa5f
2bd2884
717fa5f
 
 
 
 
 
 
 
 
 
 
 
 
2bd2884
6cf25d0
 
 
 
 
 
 
 
 
 
 
 
 
717fa5f
6cf25d0
 
 
 
 
 
 
 
 
717fa5f
6cf25d0
 
 
 
 
717fa5f
6cf25d0
be64c97
6cf25d0
 
717fa5f
6cf25d0
 
 
2bd2884
6cf25d0
 
 
2bd2884
6cf25d0
 
 
2bd2884
6cf25d0
 
 
2bd2884
6cf25d0
 
 
 
 
 
ccf3917
6cf25d0
 
 
2bd2884
6cf25d0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from langchain.chains import LLMChain
from langchain.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
import streamlit as st
import json

# Load existing ideas from a file
def load_ideas():
    try:
        with open("ideas.json", "r") as file:
            ideas = json.load(file)
    except FileNotFoundError:
        ideas = []
    return ideas

# Save ideas to a file
def save_ideas(ideas):
    with open("ideas.json", "w") as file:
        json.dump(ideas, file)

# Function to generate content
def generate_content(topic):
    hub_llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta")
    prompt = PromptTemplate(
        input_variables=['keyword'],
        template="""
        Write a comprehensive article about {keyword} covering the following aspects:
        Introduction, History and Background, Key Concepts and Terminology, Use Cases and Applications, Benefits and Drawbacks, Future Outlook, Conclusion
        Ensure that the article is well-structured, informative, and at least 1500 words long. Use SEO best practices for content optimization.
        """
    )
    hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True)
    content = hub_chain.run(topic)

    subheadings = [
        "Introduction",
        "History and Background",
        "Key Concepts and Terminology",
        "Use Cases and Applications",
        "Benefits and Drawbacks",
        "Future Outlook",
        "Conclusion",
    ]

    for subheading in subheadings:
        if (subheading + ":") in content:
            content = content.replace(subheading + ":", "## " + subheading + "\n")
        elif subheading in content:
            content = content.replace(subheading, "## " + subheading + "\n")

    return content

# Streamlit app
st.title("Blog Generator")

# Input and button
topic = st.text_input("Enter Title for the blog")
button_clicked = st.button("Create blog!")

# Load existing ideas
existing_ideas = load_ideas()
st.sidebar.header("Previous Ideas:")

# Display existing ideas in the sidebar
keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
selected_idea = st.sidebar.selectbox("Select Idea", keys, key="selectbox", index=0)

# Display content for the selected idea
selected_idea_from_list = next((idea for idea in existing_ideas if selected_idea in idea), None)
st.markdown(selected_idea_from_list[selected_idea])

# Handle button click
if button_clicked:
    # Generate content and update existing ideas
    content = generate_content(topic)
    existing_ideas.append({topic: content})
    save_ideas(existing_ideas)

    # Update keys and selected idea in the sidebar
    keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
    selected_idea = st.sidebar.selectbox("Select Idea", keys, key="selectbox", index=keys.index(topic))

    # Update selected idea content
    selected_idea_from_list = next((idea for idea in existing_ideas if selected_idea in idea), None)
    st.markdown(selected_idea_from_list[selected_idea])