Spaces:
Sleeping
Sleeping
initial commit
Browse files- app.py +181 -0
- c_data.json +0 -0
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
|
6 |
+
# load all models
|
7 |
+
deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False)
|
8 |
+
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
|
9 |
+
|
10 |
+
pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
11 |
+
pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
|
12 |
+
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
|
13 |
+
|
14 |
+
|
15 |
+
#Event Listeners
|
16 |
+
with_omp_str = 'Should contain a parallel work-sharing loop construct'
|
17 |
+
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
|
18 |
+
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
|
19 |
+
|
20 |
+
|
21 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
|
22 |
+
|
23 |
+
with open('./HF_Pragformer/c_data.json', 'r') as f:
|
24 |
+
data = json.load(f)
|
25 |
+
|
26 |
+
def fill_code(code_pth):
|
27 |
+
pragma = data[code_pth]['pragma']
|
28 |
+
code = data[code_pth]['code']
|
29 |
+
return 'None' if len(pragma)==0 else pragma, code
|
30 |
+
|
31 |
+
|
32 |
+
def predict(code_txt):
|
33 |
+
code = code_txt.lstrip().rstrip()
|
34 |
+
tokenized = tokenizer.batch_encode_plus(
|
35 |
+
[code],
|
36 |
+
max_length = 150,
|
37 |
+
pad_to_max_length = True,
|
38 |
+
truncation = True
|
39 |
+
)
|
40 |
+
pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
41 |
+
|
42 |
+
y_hat = torch.argmax(pred).item()
|
43 |
+
return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
|
44 |
+
|
45 |
+
|
46 |
+
def is_private(code_txt):
|
47 |
+
if predict(code_txt)[0] == without_omp_str:
|
48 |
+
return gr.update(visible=False)
|
49 |
+
|
50 |
+
code = code_txt.lstrip().rstrip()
|
51 |
+
tokenized = tokenizer.batch_encode_plus(
|
52 |
+
[code],
|
53 |
+
max_length = 150,
|
54 |
+
pad_to_max_length = True,
|
55 |
+
truncation = True
|
56 |
+
)
|
57 |
+
pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
58 |
+
|
59 |
+
y_hat = torch.argmax(pred).item()
|
60 |
+
# if y_hat == 0:
|
61 |
+
# return gr.update(visible=False)
|
62 |
+
# else:
|
63 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
64 |
+
|
65 |
+
|
66 |
+
def is_reduction(code_txt):
|
67 |
+
if predict(code_txt)[0] == without_omp_str:
|
68 |
+
return gr.update(visible=False)
|
69 |
+
|
70 |
+
code = code_txt.lstrip().rstrip()
|
71 |
+
tokenized = tokenizer.batch_encode_plus(
|
72 |
+
[code],
|
73 |
+
max_length = 150,
|
74 |
+
pad_to_max_length = True,
|
75 |
+
truncation = True
|
76 |
+
)
|
77 |
+
pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
|
78 |
+
|
79 |
+
y_hat = torch.argmax(pred).item()
|
80 |
+
# if y_hat == 0:
|
81 |
+
# return gr.update(visible=False)
|
82 |
+
# else:
|
83 |
+
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
|
84 |
+
|
85 |
+
|
86 |
+
def lang_predict(code_txt):
|
87 |
+
res = {}
|
88 |
+
code = code_txt.replace('\n',' ').replace('\r',' ')
|
89 |
+
predictions, raw_outputs = deep_scc_model.predict([code])
|
90 |
+
# preds = [name_file[predictions[i]] for i in range(5)]
|
91 |
+
softmax_vals = torch.nn.Softmax(dim=1)(torch.tensor(raw_outputs))
|
92 |
+
top5 = torch.topk(softmax_vals, 5)
|
93 |
+
|
94 |
+
for lang_idx, conf in zip(top5.indices.flatten(), top5.values.flatten()):
|
95 |
+
res[name_file[lang_idx.item()]] = conf.item()
|
96 |
+
|
97 |
+
return '\n'.join([f" {'V ' if k=='c' else 'X'}{k}: {v}" for k,v in res.items()])
|
98 |
+
|
99 |
+
|
100 |
+
# Define GUI
|
101 |
+
with gr.Blocks() as pragformer_gui:
|
102 |
+
|
103 |
+
gr.Markdown(
|
104 |
+
"""
|
105 |
+
# PragFormer Pragma Classifiction
|
106 |
+
|
107 |
+
""")
|
108 |
+
|
109 |
+
#with gr.Row(equal_height=True):
|
110 |
+
with gr.Column():
|
111 |
+
gr.Markdown("## Input")
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
drop = gr.Dropdown(list(data.keys()), label="Mix of parallel and not-parallel code snippets", value="Minyoung-Kim1110/OpenMP/Excercise/atomic/0")
|
115 |
+
sample_btn = gr.Button("Sample")
|
116 |
+
|
117 |
+
pragma = gr.Textbox(label="Original parallelization classification (if any)")
|
118 |
+
with gr.Row():
|
119 |
+
code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct")
|
120 |
+
lang_pred = gr.Textbox(lines=5, label="DeepScc programming language prediction")
|
121 |
+
|
122 |
+
submit_btn = gr.Button("Submit")
|
123 |
+
with gr.Column():
|
124 |
+
gr.Markdown("## Results")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
label_out = gr.Textbox(label="Label")
|
128 |
+
confidence_out = gr.Textbox(label="Confidence")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False)
|
132 |
+
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
|
133 |
+
|
134 |
+
code_in.change(fn=lang_predict, inputs=code_in, outputs=lang_pred)
|
135 |
+
|
136 |
+
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
|
137 |
+
submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
|
138 |
+
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
|
139 |
+
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
|
140 |
+
|
141 |
+
gr.Markdown(
|
142 |
+
"""
|
143 |
+
|
144 |
+
## How it Works?
|
145 |
+
|
146 |
+
To use the PragFormer tool, you will need to input a C language for-loop. You can either write your own code or use the samples
|
147 |
+
provided in the dropdown menu, which have been gathered from GitHub. Once you submit the code, the PragFormer model will analyze
|
148 |
+
it and predict whether the for-loop should be parallelized using OpenMP. If the PragFormer model determines that parallelization
|
149 |
+
is necessary, two additional models will be used to determine if adding specific data-sharing attributes, such as ***private*** or ***reduction*** clauses, is needed.
|
150 |
+
|
151 |
+
***private***- Specifies that each thread should have its own instance of a variable.
|
152 |
+
|
153 |
+
***reduction***- Specifies that one or more variables that are private to each thread are the subject of a reduction operation at
|
154 |
+
the end of the parallel region.
|
155 |
+
|
156 |
+
|
157 |
+
## Description
|
158 |
+
|
159 |
+
In past years, the world has switched to many-core and multi-core shared memory architectures.
|
160 |
+
As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications.
|
161 |
+
OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface.
|
162 |
+
Nevertheless, introducing OpenMP into code, especially legacy code, is challenging due to pervasive pitfalls in management of parallel shared memory.
|
163 |
+
To facilitate the performance of this task, many source-to-source (S2S) compilers have been created over the years, tasked with inserting OpenMP directives into
|
164 |
+
code automatically.
|
165 |
+
In addition to having limited robustness to their input format, these compilers still do not achieve satisfactory coverage and precision in locating parallelizable
|
166 |
+
code and generating appropriate directives.
|
167 |
+
In this work, we propose leveraging recent advances in machine learning techniques, specifically in natural language processing (NLP), to replace S2S compilers altogether.
|
168 |
+
We create a database (corpus), OpenMP-OMP specifically for this goal.
|
169 |
+
OpenMP-OMP contains over 28,000 code snippets, half of which contain OpenMP directives while the other half do not need parallelization at all with high probability.
|
170 |
+
We use the corpus to train systems to automatically classify code segments in need of parallelization, as well as suggest individual OpenMP clauses.
|
171 |
+
We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization
|
172 |
+
compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses.
|
173 |
+
|
174 |
+

|
175 |
+
|
176 |
+
""")
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
pragformer_gui.launch()
|
181 |
+
|
c_data.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|