talkad commited on
Commit
3ff33be
·
1 Parent(s): fb8dc58

initial commit

Browse files
Files changed (2) hide show
  1. app.py +181 -0
  2. c_data.json +0 -0
app.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import transformers
3
+ import torch
4
+ import json
5
+
6
+ # load all models
7
+ deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False)
8
+ deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
9
+
10
+ pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
11
+ pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
12
+ pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)
13
+
14
+
15
+ #Event Listeners
16
+ with_omp_str = 'Should contain a parallel work-sharing loop construct'
17
+ without_omp_str = 'Should not contain a parallel work-sharing loop construct'
18
+ name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']
19
+
20
+
21
+ tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')
22
+
23
+ with open('./HF_Pragformer/c_data.json', 'r') as f:
24
+ data = json.load(f)
25
+
26
+ def fill_code(code_pth):
27
+ pragma = data[code_pth]['pragma']
28
+ code = data[code_pth]['code']
29
+ return 'None' if len(pragma)==0 else pragma, code
30
+
31
+
32
+ def predict(code_txt):
33
+ code = code_txt.lstrip().rstrip()
34
+ tokenized = tokenizer.batch_encode_plus(
35
+ [code],
36
+ max_length = 150,
37
+ pad_to_max_length = True,
38
+ truncation = True
39
+ )
40
+ pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
41
+
42
+ y_hat = torch.argmax(pred).item()
43
+ return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()
44
+
45
+
46
+ def is_private(code_txt):
47
+ if predict(code_txt)[0] == without_omp_str:
48
+ return gr.update(visible=False)
49
+
50
+ code = code_txt.lstrip().rstrip()
51
+ tokenized = tokenizer.batch_encode_plus(
52
+ [code],
53
+ max_length = 150,
54
+ pad_to_max_length = True,
55
+ truncation = True
56
+ )
57
+ pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
58
+
59
+ y_hat = torch.argmax(pred).item()
60
+ # if y_hat == 0:
61
+ # return gr.update(visible=False)
62
+ # else:
63
+ return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
64
+
65
+
66
+ def is_reduction(code_txt):
67
+ if predict(code_txt)[0] == without_omp_str:
68
+ return gr.update(visible=False)
69
+
70
+ code = code_txt.lstrip().rstrip()
71
+ tokenized = tokenizer.batch_encode_plus(
72
+ [code],
73
+ max_length = 150,
74
+ pad_to_max_length = True,
75
+ truncation = True
76
+ )
77
+ pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))
78
+
79
+ y_hat = torch.argmax(pred).item()
80
+ # if y_hat == 0:
81
+ # return gr.update(visible=False)
82
+ # else:
83
+ return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)
84
+
85
+
86
+ def lang_predict(code_txt):
87
+ res = {}
88
+ code = code_txt.replace('\n',' ').replace('\r',' ')
89
+ predictions, raw_outputs = deep_scc_model.predict([code])
90
+ # preds = [name_file[predictions[i]] for i in range(5)]
91
+ softmax_vals = torch.nn.Softmax(dim=1)(torch.tensor(raw_outputs))
92
+ top5 = torch.topk(softmax_vals, 5)
93
+
94
+ for lang_idx, conf in zip(top5.indices.flatten(), top5.values.flatten()):
95
+ res[name_file[lang_idx.item()]] = conf.item()
96
+
97
+ return '\n'.join([f" {'V ' if k=='c' else 'X'}{k}: {v}" for k,v in res.items()])
98
+
99
+
100
+ # Define GUI
101
+ with gr.Blocks() as pragformer_gui:
102
+
103
+ gr.Markdown(
104
+ """
105
+ # PragFormer Pragma Classifiction
106
+
107
+ """)
108
+
109
+ #with gr.Row(equal_height=True):
110
+ with gr.Column():
111
+ gr.Markdown("## Input")
112
+ with gr.Row():
113
+ with gr.Column():
114
+ drop = gr.Dropdown(list(data.keys()), label="Mix of parallel and not-parallel code snippets", value="Minyoung-Kim1110/OpenMP/Excercise/atomic/0")
115
+ sample_btn = gr.Button("Sample")
116
+
117
+ pragma = gr.Textbox(label="Original parallelization classification (if any)")
118
+ with gr.Row():
119
+ code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct")
120
+ lang_pred = gr.Textbox(lines=5, label="DeepScc programming language prediction")
121
+
122
+ submit_btn = gr.Button("Submit")
123
+ with gr.Column():
124
+ gr.Markdown("## Results")
125
+
126
+ with gr.Row():
127
+ label_out = gr.Textbox(label="Label")
128
+ confidence_out = gr.Textbox(label="Confidence")
129
+
130
+ with gr.Row():
131
+ private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False)
132
+ reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)
133
+
134
+ code_in.change(fn=lang_predict, inputs=code_in, outputs=lang_pred)
135
+
136
+ submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
137
+ submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
138
+ submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
139
+ sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])
140
+
141
+ gr.Markdown(
142
+ """
143
+
144
+ ## How it Works?
145
+
146
+ To use the PragFormer tool, you will need to input a C language for-loop. You can either write your own code or use the samples
147
+ provided in the dropdown menu, which have been gathered from GitHub. Once you submit the code, the PragFormer model will analyze
148
+ it and predict whether the for-loop should be parallelized using OpenMP. If the PragFormer model determines that parallelization
149
+ is necessary, two additional models will be used to determine if adding specific data-sharing attributes, such as ***private*** or ***reduction*** clauses, is needed.
150
+
151
+ ***private***- Specifies that each thread should have its own instance of a variable.
152
+
153
+ ***reduction***- Specifies that one or more variables that are private to each thread are the subject of a reduction operation at
154
+ the end of the parallel region.
155
+
156
+
157
+ ## Description
158
+
159
+ In past years, the world has switched to many-core and multi-core shared memory architectures.
160
+ As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications.
161
+ OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface.
162
+ Nevertheless, introducing OpenMP into code, especially legacy code, is challenging due to pervasive pitfalls in management of parallel shared memory.
163
+ To facilitate the performance of this task, many source-to-source (S2S) compilers have been created over the years, tasked with inserting OpenMP directives into
164
+ code automatically.
165
+ In addition to having limited robustness to their input format, these compilers still do not achieve satisfactory coverage and precision in locating parallelizable
166
+ code and generating appropriate directives.
167
+ In this work, we propose leveraging recent advances in machine learning techniques, specifically in natural language processing (NLP), to replace S2S compilers altogether.
168
+ We create a database (corpus), OpenMP-OMP specifically for this goal.
169
+ OpenMP-OMP contains over 28,000 code snippets, half of which contain OpenMP directives while the other half do not need parallelization at all with high probability.
170
+ We use the corpus to train systems to automatically classify code segments in need of parallelization, as well as suggest individual OpenMP clauses.
171
+ We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization
172
+ compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses.
173
+
174
+ ![](https://user-images.githubusercontent.com/104314626/165228036-d7fadd8d-768a-4e94-bd57-0a77e1330082.png)
175
+
176
+ """)
177
+
178
+
179
+
180
+ pragformer_gui.launch()
181
+
c_data.json ADDED
The diff for this file is too large to render. See raw diff