Spaces:
Sleeping
Sleeping
Distribución de poder de procesamiento
Browse files- app.py +14 -19
- funciones.py +50 -10
- globales.py +7 -0
- requirements.txt +1 -0
- tester.py +0 -3
app.py
CHANGED
|
@@ -1,12 +1,8 @@
|
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile
|
| 2 |
-
from fastapi.responses import StreamingResponse
|
| 3 |
-
|
| 4 |
-
import io
|
| 5 |
from io import BytesIO
|
| 6 |
-
|
| 7 |
-
from fastapi import FastAPI, Form
|
| 8 |
-
|
| 9 |
-
import funciones
|
| 10 |
|
| 11 |
app = FastAPI()
|
| 12 |
|
|
@@ -18,15 +14,14 @@ async def echo_image(image: UploadFile = File(...)):
|
|
| 18 |
contents = await image.read()
|
| 19 |
return StreamingResponse(BytesIO(contents), media_type=image.content_type)
|
| 20 |
|
| 21 |
-
@app.post("/
|
| 22 |
-
async def
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
return StreamingResponse(content=img_io, media_type="image/png")
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Form
|
| 2 |
from fastapi import FastAPI, File, UploadFile
|
| 3 |
+
from fastapi.responses import StreamingResponse, FileResponse
|
|
|
|
|
|
|
| 4 |
from io import BytesIO
|
| 5 |
+
import funciones, globales
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
|
|
|
| 14 |
contents = await image.read()
|
| 15 |
return StreamingResponse(BytesIO(contents), media_type=image.content_type)
|
| 16 |
|
| 17 |
+
@app.post("/genera-imagen/")
|
| 18 |
+
async def genera_imagen(platillo: str = Form(...)):
|
| 19 |
+
|
| 20 |
+
if globales.seconds_available > 25:
|
| 21 |
+
print("GPU...")
|
| 22 |
+
resultado = funciones.genera_platillo_gpu(platillo)
|
| 23 |
+
return FileResponse(resultado, media_type="image/png", filename="imagen.png")
|
| 24 |
+
else:
|
| 25 |
+
print("Inference...")
|
| 26 |
+
resultado = funciones.genera_platillo_inference(platillo)
|
| 27 |
+
return StreamingResponse(content=resultado, media_type="image/png")
|
|
|
funciones.py
CHANGED
|
@@ -1,22 +1,58 @@
|
|
| 1 |
import bridges
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
client = InferenceClient(
|
| 10 |
-
provider= proveedor,
|
| 11 |
api_key=bridges.hug
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
try:
|
| 17 |
image = client.text_to_image(
|
| 18 |
prompt,
|
| 19 |
-
model=
|
| 20 |
#seed=42, #default varía pero el default es que siempre sea la misma.
|
| 21 |
#guidance_scale=7.5,
|
| 22 |
#num_inference_steps=50,
|
|
@@ -24,7 +60,11 @@ def genera_platillo(prompt):
|
|
| 24 |
#height=1024 #El límite de replicate es 1024.
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
except Exception as e:
|
| 30 |
print("Excepción es: ", e)
|
|
|
|
| 1 |
import bridges
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
import gradio_client
|
| 4 |
+
import io
|
| 5 |
+
import globales
|
| 6 |
|
| 7 |
+
|
| 8 |
+
previo = "Una fotografía de un plato blanco con "
|
| 9 |
+
|
| 10 |
+
def genera_platillo_gpu(platillo):
|
| 11 |
+
|
| 12 |
+
client = gradio_client.Client(globales.espacio, hf_token=bridges.hug)
|
| 13 |
+
|
| 14 |
+
prompt = previo + platillo
|
| 15 |
+
|
| 16 |
+
print("Eso es el prompt final:", prompt)
|
| 17 |
+
|
| 18 |
+
kwargs = {
|
| 19 |
+
"prompt": prompt,
|
| 20 |
+
"api_name": "/infer"
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
result = client.predict(**kwargs
|
| 26 |
+
# prompt=prompt,
|
| 27 |
+
# negative_prompt="",
|
| 28 |
+
# seed=42,
|
| 29 |
+
# randomize_seed=True,
|
| 30 |
+
# width=1024,
|
| 31 |
+
# height=1024,
|
| 32 |
+
# guidance_scale=3.5,
|
| 33 |
+
# num_inference_steps=28,
|
| 34 |
+
# api_name="/infer"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
return result[0]
|
| 38 |
+
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print("Excepción es: ", e)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def genera_platillo_inference(platillo):
|
| 44 |
|
| 45 |
client = InferenceClient(
|
| 46 |
+
provider= globales.proveedor,
|
| 47 |
api_key=bridges.hug
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
prompt = previo + platillo
|
| 51 |
|
| 52 |
try:
|
| 53 |
image = client.text_to_image(
|
| 54 |
prompt,
|
| 55 |
+
model=globales.inferencia,
|
| 56 |
#seed=42, #default varía pero el default es que siempre sea la misma.
|
| 57 |
#guidance_scale=7.5,
|
| 58 |
#num_inference_steps=50,
|
|
|
|
| 60 |
#height=1024 #El límite de replicate es 1024.
|
| 61 |
)
|
| 62 |
|
| 63 |
+
img_io = io.BytesIO()
|
| 64 |
+
image.save(img_io, "PNG")
|
| 65 |
+
img_io.seek(0)
|
| 66 |
+
|
| 67 |
+
return img_io
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print("Excepción es: ", e)
|
globales.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
seconds_available = 0
|
| 2 |
+
|
| 3 |
+
#espacio = "black-forest-labs/FLUX.1-schnell"
|
| 4 |
+
espacio = "black-forest-labs/FLUX.1-dev"
|
| 5 |
+
inferencia = "black-forest-labs/FLUX.1-dev"
|
| 6 |
+
|
| 7 |
+
proveedor = "hf-inference"
|
requirements.txt
CHANGED
|
@@ -2,5 +2,6 @@ fastapi
|
|
| 2 |
fastapi[standard]
|
| 3 |
|
| 4 |
huggingface_hub
|
|
|
|
| 5 |
|
| 6 |
Pillow
|
|
|
|
| 2 |
fastapi[standard]
|
| 3 |
|
| 4 |
huggingface_hub
|
| 5 |
+
gradio_client
|
| 6 |
|
| 7 |
Pillow
|
tester.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
import funciones
|
| 2 |
-
|
| 3 |
-
funciones.genera_platillo()
|
|
|
|
|
|
|
|
|
|
|
|