Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load the pretrained model and feature extractor
|
6 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
7 |
+
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
8 |
+
|
9 |
+
# Define the function to classify images
|
10 |
+
def classify_image(image):
|
11 |
+
image = Image.fromarray(image).convert("RGB") # Convert input image to RGB
|
12 |
+
inputs = feature_extractor(images=image, return_tensors="pt") # Preprocess image
|
13 |
+
outputs = model(**inputs) # Get model predictions
|
14 |
+
predicted_class_idx = outputs.logits.argmax(-1).item() # Get predicted class index
|
15 |
+
return model.config.id2label[predicted_class_idx] # Return class label
|
16 |
+
|
17 |
+
# Create a Gradio app interface
|
18 |
+
app = gr.Interface(
|
19 |
+
fn=classify_image, # Function to run
|
20 |
+
inputs=gr.Image(type="numpy"), # Input: Image
|
21 |
+
outputs="text", # Output: Predicted class label
|
22 |
+
title="Image Classification App" # App title
|
23 |
+
)
|
24 |
+
|
25 |
+
# Launch the app
|
26 |
+
app.launch()
|