Spaces:
Running
Running
gradio
Browse files
app.py
CHANGED
@@ -1,25 +1,44 @@
|
|
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
-
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
|
|
|
5 |
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
|
6 |
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
|
7 |
-
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
+
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
|
6 |
+
# Load tokenizer, processor, and model
|
7 |
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
|
8 |
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
|
9 |
+
model = Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
|
10 |
+
|
11 |
+
# Define the function for transcribing audio
|
12 |
+
def transcribe(audio):
|
13 |
+
# Load the audio data from the Gradio input (audio is in the format of a NumPy array)
|
14 |
+
input_audio = audio
|
15 |
+
sr = 16000 # Ensure the sample rate is 16000 Hz, which is expected by the model
|
16 |
+
|
17 |
+
# Tokenize the audio
|
18 |
+
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
|
19 |
+
|
20 |
+
# Get the model's logits
|
21 |
+
logits = model(input_values).logits
|
22 |
+
|
23 |
+
# Find the predicted tokens
|
24 |
+
tokens = torch.argmax(logits, axis=-1)
|
25 |
+
|
26 |
+
# Decode the tokens to text
|
27 |
+
transcription = tokenizer.batch_decode(tokens)
|
28 |
+
|
29 |
+
return transcription[0]
|
30 |
+
|
31 |
+
# Create the Gradio interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=transcribe, # Function to be called when an audio file is uploaded or recorded
|
34 |
+
inputs=[
|
35 |
+
gr.Audio(source="upload", type="numpy"), # Allow user to upload an audio file
|
36 |
+
gr.Audio(source="microphone", type="numpy") # Allow user to record audio from the browser
|
37 |
+
],
|
38 |
+
outputs="text", # Output will be a transcription text
|
39 |
+
title="Moroccan Darija Speech-to-Text", # Interface title
|
40 |
+
description="Upload an audio file or record audio directly from your microphone to transcribe it into Moroccan Darija."
|
41 |
+
)
|
42 |
+
|
43 |
+
# Launch the interface
|
44 |
+
interface.launch()
|