Spaces:
Running
Running
../
Browse files
app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
|
6 |
# Load pre-trained model and processor directly from Hugging Face Hub
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
|
|
|
|
|
|
|
|
10 |
def transcribe_audio(audio):
|
11 |
# Load the audio file from Gradio interface
|
12 |
audio_array, sr = librosa.load(audio, sr=16000)
|
@@ -20,15 +24,31 @@ def transcribe_audio(audio):
|
|
20 |
# Get the predicted tokens
|
21 |
tokens = torch.argmax(logits, axis=-1)
|
22 |
|
23 |
-
# Decode the tokens into text
|
24 |
transcription = processor.decode(tokens[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
return
|
27 |
|
28 |
# Create a Gradio interface for uploading audio or recording from the browser
|
29 |
demo = gr.Interface(fn=transcribe_audio,
|
30 |
inputs=gr.Audio(type="filepath"), # Corrected input component
|
31 |
-
outputs="text"
|
|
|
32 |
|
33 |
demo.launch()
|
34 |
-
demo.launch(api=True,share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
|
5 |
|
6 |
# Load pre-trained model and processor directly from Hugging Face Hub
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
10 |
+
# Load translation model
|
11 |
+
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
12 |
+
translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar")
|
13 |
+
|
14 |
def transcribe_audio(audio):
|
15 |
# Load the audio file from Gradio interface
|
16 |
audio_array, sr = librosa.load(audio, sr=16000)
|
|
|
24 |
# Get the predicted tokens
|
25 |
tokens = torch.argmax(logits, axis=-1)
|
26 |
|
27 |
+
# Decode the tokens into text (Darija transcription)
|
28 |
transcription = processor.decode(tokens[0])
|
29 |
+
|
30 |
+
# Translate the transcription to English
|
31 |
+
translation = translate_text(transcription)
|
32 |
+
|
33 |
+
return transcription, translation
|
34 |
+
|
35 |
+
def translate_text(text):
|
36 |
+
# Tokenize the text to translate
|
37 |
+
inputs = translation_tokenizer(text, return_tensors="pt")
|
38 |
+
|
39 |
+
# Generate translated tokens (from Darija to English)
|
40 |
+
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en"])
|
41 |
+
|
42 |
+
# Decode the translated tokens into text
|
43 |
+
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
44 |
|
45 |
+
return translated_text
|
46 |
|
47 |
# Create a Gradio interface for uploading audio or recording from the browser
|
48 |
demo = gr.Interface(fn=transcribe_audio,
|
49 |
inputs=gr.Audio(type="filepath"), # Corrected input component
|
50 |
+
outputs=["text", "text"], # Both transcription and translation outputs
|
51 |
+
live=True)
|
52 |
|
53 |
demo.launch()
|
54 |
+
demo.launch(api=True, share=True)
|