Mohssinibra commited on
Commit
bc32c3a
·
verified ·
1 Parent(s): 3b0e26c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -4,7 +4,7 @@ import torch
4
  from transformers import (
5
  Wav2Vec2ForCTC, Wav2Vec2Processor,
6
  MarianMTModel, MarianTokenizer,
7
- BertForSequenceClassification, AutoModel, AutoTokenizer
8
  )
9
 
10
  # Detect device
@@ -35,7 +35,7 @@ bert_model = BertForSequenceClassification.from_pretrained(bert_model_name, num_
35
  # Charger le modèle et le tokenizer Darija
36
  sentiment_model_name = "BenhamdaneNawfal/sentiment-analysis-darija"
37
  sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
38
- sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name).to("cuda" if torch.cuda.is_available() else "cpu")
39
 
40
  # Labels du modèle (à modifier selon le modèle utilisé)
41
  sentiment_labels = ["Négatif", "Neutre", "Positif"]
 
4
  from transformers import (
5
  Wav2Vec2ForCTC, Wav2Vec2Processor,
6
  MarianMTModel, MarianTokenizer,
7
+ BertForSequenceClassification, AutoModel, AutoTokenizer,AutoModelForSequenceClassification
8
  )
9
 
10
  # Detect device
 
35
  # Charger le modèle et le tokenizer Darija
36
  sentiment_model_name = "BenhamdaneNawfal/sentiment-analysis-darija"
37
  sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
38
+ sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name,num_labels=3).to("cuda" if torch.cuda.is_available() else "cpu")
39
 
40
  # Labels du modèle (à modifier selon le modèle utilisé)
41
  sentiment_labels = ["Négatif", "Neutre", "Positif"]