Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
from transformers import (
|
5 |
Wav2Vec2ForCTC, Wav2Vec2Processor,
|
6 |
MarianMTModel, MarianTokenizer,
|
7 |
-
BertForSequenceClassification, AutoModel, AutoTokenizer
|
8 |
)
|
9 |
|
10 |
# Detect device
|
@@ -35,7 +35,7 @@ bert_model = BertForSequenceClassification.from_pretrained(bert_model_name, num_
|
|
35 |
# Charger le modèle et le tokenizer Darija
|
36 |
sentiment_model_name = "BenhamdaneNawfal/sentiment-analysis-darija"
|
37 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
38 |
-
sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name).to("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
|
40 |
# Labels du modèle (à modifier selon le modèle utilisé)
|
41 |
sentiment_labels = ["Négatif", "Neutre", "Positif"]
|
|
|
4 |
from transformers import (
|
5 |
Wav2Vec2ForCTC, Wav2Vec2Processor,
|
6 |
MarianMTModel, MarianTokenizer,
|
7 |
+
BertForSequenceClassification, AutoModel, AutoTokenizer,AutoModelForSequenceClassification
|
8 |
)
|
9 |
|
10 |
# Detect device
|
|
|
35 |
# Charger le modèle et le tokenizer Darija
|
36 |
sentiment_model_name = "BenhamdaneNawfal/sentiment-analysis-darija"
|
37 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
38 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name,num_labels=3).to("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
|
40 |
# Labels du modèle (à modifier selon le modèle utilisé)
|
41 |
sentiment_labels = ["Négatif", "Neutre", "Positif"]
|