MohammadReza-Halakoo's picture
Create app.py
4885664 verified
raw
history blame
11.1 kB
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import librosa
import numpy as np
import logging
import base64
import os
import time
import datetime
from html import escape
from difflib import SequenceMatcher
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
# ===== Logging =====
logging.basicConfig(level=logging.INFO)
# ===== Device =====
device = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {device}")
# ===== Model (Private) =====
# 1) در Settings → Secrets یک secret با نام HF_TOKEN بسازید
HF_TOKEN = os.getenv("HF_TOKEN", None)
if HF_TOKEN is None:
logging.warning("HF_TOKEN is not set. Make sure to add it in Space Settings → Secrets.")
# 2) آیدی مدل Private خودتان را اینجا قرار دهید
# مثال: "MohammadReza-Halakoo/1-persian-whisper-large-v"
MODEL_ID = os.getenv("MODEL_ID", "MohammadReza-Halakoo/1-persian-whisper-large-v")
processor = AutoProcessor.from_pretrained(MODEL_ID, use_auth_token=HF_TOKEN)
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_ID, use_auth_token=HF_TOKEN)
model = model.to(device)
# attention mask fix (ایمن)
if model.config.pad_token_id is None:
model.config.pad_token_id = processor.tokenizer.pad_token_id
if model.config.pad_token_id == model.config.eos_token_id:
if processor.tokenizer.pad_token_id != processor.tokenizer.eos_token_id:
model.config.pad_token_id = processor.tokenizer.pad_token_id
else:
processor.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(processor.tokenizer))
model.config.pad_token_id = processor.tokenizer.pad_token_id
# ===== Audio Utils =====
def load_audio_preserving_quality(audio_path, target_sr=16000):
try:
audio, sr = librosa.load(audio_path, sr=None, mono=False)
if audio.ndim > 1:
audio = np.mean(audio, axis=0)
if sr != target_sr:
audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr)
sr = target_sr
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
audio = np.nan_to_num(audio)
return audio, sr
except Exception as e:
logging.error(f"Audio load error: {str(e)}")
return None, None
def remove_intermediate_silence(audio, sr, silence_thresh=-38, min_silence_len=700, padding=200):
try:
audio_segment = AudioSegment(
(audio * np.iinfo(np.int16).max).astype(np.int16).tobytes(),
frame_rate=sr,
sample_width=2,
channels=1
)
nonsilent_ranges = detect_nonsilent(
audio_segment,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh
)
if not nonsilent_ranges:
return np.array([], dtype=np.float32), sr
non_silent_audio = AudioSegment.empty()
for start, end in nonsilent_ranges:
start = max(0, start - padding)
end = min(len(audio_segment), end + padding)
non_silent_audio += audio_segment[start:end]
processed_audio = np.array(non_silent_audio.get_array_of_samples()).astype(np.float32)
processed_audio /= np.iinfo(np.int16).max
return processed_audio, sr
except Exception as e:
logging.error(f"Silence removal error: {str(e)}")
return audio, sr
def is_silent(audio, threshold=1e-4):
if audio is None or len(audio) == 0:
return True
rms = np.sqrt(np.mean(audio**2))
return rms < threshold
def merge_transcriptions(transcriptions):
if not transcriptions:
return ''
final_transcription = transcriptions[0]
for i in range(1, len(transcriptions)):
prev_transcription = final_transcription
current_transcription = transcriptions[i]
N = 50
prev_part = prev_transcription[-N:]
curr_part = current_transcription[:N]
match = SequenceMatcher(None, prev_part, curr_part).find_longest_match(0, len(prev_part), 0, len(curr_part))
if match.size > 10:
non_overlapping_part = current_transcription[match.b + match.size:]
final_transcription += non_overlapping_part
else:
final_transcription += ' ' + current_transcription
return final_transcription
# ===== Core Inference =====
def transcribe_audio(mic=None, upload_audio=None, file=None):
start_time = time.time()
audio_path = mic or upload_audio or (file.name if file else None)
if not audio_path:
return 'لطفاً یک فایل صوتی یا صدای ضبط‌شده ارسال کنید.', None, None, None
audio, sr = load_audio_preserving_quality(audio_path, target_sr=16000)
if audio is None:
return "خطا در بارگذاری و پردازش صوت.", None, None, None
audio, sr = remove_intermediate_silence(audio, sr)
if is_silent(audio):
return 'صوت ورودی حاوی صدای قابل پردازش نیست.', None, None, None
# تقسیم به چانک‌های 29 ثانیه با هم‌پوشانی 3 ثانیه
max_chunk_length = 29
stride_length = 3
max_chunk_samples = max_chunk_length * sr
stride_samples = stride_length * sr
chunks, start = [], 0
while start < len(audio):
end = min(start + max_chunk_samples, len(audio))
chunks.append(audio[int(start):int(end)])
if end == len(audio):
break
start += max_chunk_samples - stride_samples
if not chunks:
return 'صوت ورودی خالی است.', None, None, None
transcriptions = []
for i, chunk in enumerate(chunks):
try:
inputs = processor(chunk, sampling_rate=sr, return_tensors="pt", padding=True)
input_features = inputs.input_features.to(device)
attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None
with torch.no_grad():
generated_ids = model.generate(
input_features,
attention_mask=attention_mask,
num_beams=5,
length_penalty=1.0,
repetition_penalty=1.1,
no_repeat_ngram_size=4,
temperature=0.9,
)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
transcriptions.append(transcription)
except Exception as e:
logging.error(f"Model error on chunk {i+1}: {str(e)}")
return "خطا در تبدیل گفتار به متن رخ داد.", None, None, None
final_transcription = merge_transcriptions(transcriptions)
if not final_transcription.strip():
return 'هیچ متنی استخراج نشد.', None, None, None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"transcription_{timestamp}.txt"
with open(filename, "w", encoding="utf-8") as f:
f.write(final_transcription)
escaped_transcription = escape(final_transcription)
copy_download_buttons_html = f"""
<div class="copy-download-buttons">
<button id="copy-button" data-transcription="{escaped_transcription}"
onclick="
var t=this.getAttribute('data-transcription');
if(t){{navigator.clipboard.writeText(t).then(()=>alert('متن کپی شد!'),err=>alert('عدم موفقیت کپی: '+err));}}
else{{alert('متنی یافت نشد!');}}
"
style="padding:8px 16px; background:#4CAF50; color:#fff; border:none; cursor:pointer;">
کپی متن
</button>
<button id="download-button"
onclick="
var a=document.querySelector('#download-file a');
if(a) a.click(); else alert('لینک دانلود یافت نشد!');
"
style="padding:8px 16px; background:#008CBA; color:#fff; border:none; cursor:pointer;">
دانلود متن
</button>
</div>
"""
audio_output = audio_path if file else None
return final_transcription, filename, copy_download_buttons_html, audio_output
# ===== Image helper =====
def image_to_base64(image_path):
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception:
return None
# لطفاً یک تصویر در مسیر assets/hero.jpg قرار دهید (دلخواه)
image_base64 = image_to_base64("assets/hero.jpg")
# ===== UI =====
custom_css = """
body { background-color: rgba(0,0,128,0.7); color:#fff; }
h1 { color:#fff; }
p { color:#ccc; }
button { border:none; padding:10px 20px; border-radius:8px; color:#fff; }
.copy-download-buttons { display:flex; gap:20px; justify-content:center; margin-top:20px; }
textarea { border-radius:8px; padding:10px; background-color: rgba(52,58,64,0.9); color:white; border:none; direction:rtl; text-align:right; }
.gradio-container { border-radius:10px; padding:20px; margin:20px; background-color: rgba(28,30,34,0.9); }
#gradio-app .powered-by, footer { display:none !important; }
"""
title = "تبدیل گفتار به متن (Whisper فارسی)"
img_html = f'<img src="data:image/jpeg;base64,{image_base64}" width="400px">' if image_base64 else ""
description = f"""
<div style="text-align:center; direction:rtl;">
<p>با استفاده از مدل خصوصی، صوت شما به متن تبدیل می‌شود. دسترسی مستقیم به فایل‌های مدل امکان‌پذیر نیست.</p>
<div style="display:flex; justify-content:center;">{img_html}</div>
</div>
"""
article = """
<div style="direction:rtl;">
این یک دمو برای ماژول گفتار به متن فارسی است.
</div>
"""
interface = gr.Interface(
fn=transcribe_audio,
inputs=[
gr.Audio(source="microphone", type="filepath", label="صدای خود را ضبط کنید", clear_on_submit=True),
gr.Audio(source="upload", type="filepath", label="یک فایل صوتی بارگذاری کنید", max_size=300, clear_on_submit=True),
gr.File(label="فایل‌های صوتی بزرگ (اختیاری)", type="file")
],
outputs=[
gr.Textbox(label="متن تبدیل‌شده", interactive=False, lines=4, elem_id="output-text", placeholder="نتیجه اینجا نمایش داده می‌شود."),
gr.File(label="دانلود متن", elem_id="download-file"),
gr.HTML(value="", elem_id="copy-download-buttons"),
gr.Audio(label="پخش فایل ورودی", type="filepath")
],
title=title,
description=description,
article=article,
css=custom_css,
allow_flagging="never",
live=False
)
if __name__ == "__main__":
# روی Spaces فقط launch ساده نیاز است؛ نیازی به پورت/SSL/Share نیست.
interface.launch(show_error=True)