Spaces:
Sleeping
Sleeping
# app.py — TRUST OCR DEMO (Streamlit) — works even if batch_text_detection is missing | |
import os | |
import io | |
import tempfile | |
from typing import List | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import pypdfium2 | |
import pytesseract | |
# --- set safe dirs before importing streamlit --- | |
safe_home = os.environ.get("HOME") or "/app" | |
os.environ["HOME"] = safe_home | |
cfg_dir = os.path.join(safe_home, ".streamlit") | |
os.makedirs(cfg_dir, exist_ok=True) | |
# اطمینان از اینکه Streamlit همه فایلها را اینجا مینویسد | |
os.environ["STREAMLIT_CONFIG_DIR"] = cfg_dir | |
# اگر دوست داری همینجا config.toml بسازی و usage stats را خاموش کنی: | |
conf_path = os.path.join(cfg_dir, "config.toml") | |
if not os.path.exists(conf_path): | |
with open(conf_path, "w", encoding="utf-8") as f: | |
f.write("browser.gatherUsageStats = false\n") | |
# runtime dir امن | |
runtime_dir = os.path.join(tempfile.gettempdir(), ".streamlit") | |
os.environ["STREAMLIT_RUNTIME_DIR"] = runtime_dir | |
os.makedirs(runtime_dir, exist_ok=True) | |
import streamlit as st | |
# ===== Safe runtime dir for Streamlit/HF cache ===== | |
# runtime_dir = os.path.join(tempfile.gettempdir(), ".streamlit") | |
# os.environ["STREAMLIT_RUNTIME_DIR"] = runtime_dir | |
# os.makedirs(runtime_dir, exist_ok=True) | |
# ===== Try to import Surya APIs ===== | |
DET_AVAILABLE = True | |
try: | |
from surya.detection import batch_text_detection | |
except Exception: | |
DET_AVAILABLE = False | |
from surya.layout import batch_layout_detection # may still import; we’ll gate usage by DET_AVAILABLE | |
# Detection model loaders: segformer (newer) vs model (older) | |
try: | |
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor | |
except Exception: | |
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.model.ordering.model import load_model as load_order_model | |
from surya.model.ordering.processor import load_processor as load_order_processor | |
from surya.ordering import batch_ordering | |
from surya.ocr import run_ocr | |
from surya.postprocessing.heatmap import draw_polys_on_image | |
from surya.postprocessing.text import draw_text_on_image | |
from surya.languages import CODE_TO_LANGUAGE | |
from surya.input.langs import replace_lang_with_code | |
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult | |
# ===================== Helper Functions ===================== | |
def remove_border(image_path: str, output_path: str) -> np.ndarray: | |
"""Remove outer border & deskew (perspective) if a rectangular contour is found.""" | |
image = cv2.imread(image_path) | |
if image is None: | |
raise ValueError(f"Cannot read image: {image_path}") | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if not contours: | |
cv2.imwrite(output_path, image) | |
return image | |
max_contour = max(contours, key=cv2.contourArea) | |
epsilon = 0.02 * cv2.arcLength(max_contour, True) | |
approx = cv2.approxPolyDP(max_contour, epsilon, True) | |
if len(approx) == 4: | |
pts = approx.reshape(4, 2).astype("float32") | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] # tl | |
rect[2] = pts[np.argmax(s)] # br | |
diff = np.diff(pts, axis=1) | |
rect[1] = pts[np.argmin(diff)] # tr | |
rect[3] = pts[np.argmax(diff)] # bl | |
(tl, tr, br, bl) = rect | |
widthA = np.linalg.norm(br - bl) | |
widthB = np.linalg.norm(tr - tl) | |
maxWidth = max(int(widthA), int(widthB)) | |
heightA = np.linalg.norm(tr - br) | |
heightB = np.linalg.norm(tl - bl) | |
maxHeight = max(int(heightA), int(heightB)) | |
dst = np.array([[0, 0], [maxWidth - 1, 0], | |
[maxWidth - 1, maxHeight - 1], | |
[0, maxHeight - 1]], dtype="float32") | |
M = cv2.getPerspectiveTransform(rect, dst) | |
cropped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) | |
cv2.imwrite(output_path, cropped) | |
return cropped | |
else: | |
cv2.imwrite(output_path, image) | |
return image | |
def open_pdf(pdf_file) -> pypdfium2.PdfDocument: | |
stream = io.BytesIO(pdf_file.getvalue()) | |
return pypdfium2.PdfDocument(stream) | |
def get_page_image(pdf_file, page_num: int, dpi: int = 96) -> Image.Image: | |
doc = open_pdf(pdf_file) | |
renderer = doc.render(pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72) | |
png = list(renderer)[0] | |
return png.convert("RGB") | |
def page_count(pdf_file) -> int: | |
doc = open_pdf(pdf_file) | |
return len(doc) | |
# ===================== Streamlit UI ===================== | |
st.set_page_config(page_title="TRUST OCR DEMO", layout="wide") | |
st.markdown("# TRUST OCR DEMO") | |
if not DET_AVAILABLE: | |
st.warning("⚠️ ماژول تشخیص متن Surya در این محیط در دسترس نیست. OCR کامل کار میکند، اما دکمههای Detection/Layout/Order غیرفعال شدهاند. برای فعالسازی آنها، Surya را به نسخهٔ سازگار پین کنید (راهنما پایین صفحه).") | |
# Sidebar controls | |
in_file = st.sidebar.file_uploader("فایل PDF یا عکس :", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) | |
languages = st.sidebar.multiselect( | |
"زبانها (Languages)", | |
sorted(list(CODE_TO_LANGUAGE.values())), | |
default=["Persian"], | |
max_selections=4 | |
) | |
auto_rotate = st.sidebar.toggle("چرخش خودکار (Tesseract OSD)", value=True) | |
auto_border = st.sidebar.toggle("حذف قاب/کادر تصویر ورودی", value=True) | |
# Buttons (disable some if detection missing) | |
text_det_btn = st.sidebar.button("تشخیص متن (Detection)", disabled=not DET_AVAILABLE) | |
layout_det_btn = st.sidebar.button("آنالیز صفحه (Layout)", disabled=not DET_AVAILABLE) | |
order_det_btn = st.sidebar.button("ترتیب خوانش (Reading Order)", disabled=not DET_AVAILABLE) | |
text_rec_btn = st.sidebar.button("تبدیل به متن (Recognition)") | |
if in_file is None: | |
st.info("یک فایل PDF/عکس از سایدبار انتخاب کنید. | Please upload a file to begin.") | |
st.stop() | |
filetype = in_file.type | |
# Two-column layout (left: outputs / right: input image) | |
col2, col1 = st.columns([.5, .5]) | |
# ===================== Load Models (cached) ===================== | |
def load_det_cached(): | |
return load_det_model(checkpoint="vikp/surya_det2"), load_det_processor(checkpoint="vikp/surya_det2") | |
def load_rec_cached(): | |
return load_rec_model(checkpoint="MohammadReza-Halakoo/TrustOCR"), \ | |
load_rec_processor(checkpoint="MohammadReza-Halakoo/TrustOCR") | |
def load_layout_cached(): | |
return load_det_model(checkpoint="vikp/surya_layout2"), load_det_processor(checkpoint="vikp/surya_layout2") | |
def load_order_cached(): | |
return load_order_model(checkpoint="vikp/surya_order"), load_order_processor(checkpoint="vikp/surya_order") | |
# recognition models are enough for run_ocr; detection/layout/order models used only if DET_AVAILABLE | |
rec_model, rec_processor = load_rec_cached() | |
if DET_AVAILABLE: | |
det_model, det_processor = load_det_cached() | |
layout_model, layout_processor = load_layout_cached() | |
order_model, order_processor = load_order_cached() | |
else: | |
det_model = det_processor = layout_model = layout_processor = order_model = order_processor = None | |
# ===================== High-level Ops ===================== | |
def _apply_auto_rotate(pil_img: Image.Image) -> Image.Image: | |
"""Auto-rotate using Tesseract OSD if enabled.""" | |
if not auto_rotate: | |
return pil_img | |
try: | |
osd = pytesseract.image_to_osd(pil_img, output_type=pytesseract.Output.DICT) | |
angle = int(osd.get("rotate", 0)) # 0/90/180/270 | |
if angle and angle % 360 != 0: | |
return pil_img.rotate(-angle, expand=True) | |
return pil_img | |
except Exception as e: | |
st.warning(f"OSD rotation failed, continuing without rotation. Error: {e}") | |
return pil_img | |
def text_detection(pil_img: Image.Image): | |
pred: TextDetectionResult = batch_text_detection([pil_img], det_model, det_processor)[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
det_img = draw_polys_on_image(polygons, pil_img.copy()) | |
return det_img, pred | |
def layout_detection(pil_img: Image.Image): | |
_, det_pred = text_detection(pil_img) | |
pred: LayoutResult = batch_layout_detection([pil_img], layout_model, layout_processor, [det_pred])[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
labels = [p.label for p in pred.bboxes] | |
layout_img = draw_polys_on_image(polygons, pil_img.copy(), labels=labels, label_font_size=40) | |
return layout_img, pred | |
def order_detection(pil_img: Image.Image): | |
_, layout_pred = layout_detection(pil_img) | |
bboxes = [l.bbox for l in layout_pred.bboxes] | |
pred: OrderResult = batch_ordering([pil_img], [bboxes], order_model, order_processor)[0] | |
polys = [l.polygon for l in pred.bboxes] | |
positions = [str(l.position) for l in pred.bboxes] | |
order_img = draw_polys_on_image(polys, pil_img.copy(), labels=positions, label_font_size=40) | |
return order_img, pred | |
def ocr_page(pil_img: Image.Image, langs: List[str]): | |
"""Full-page OCR using Surya run_ocr — works without detection import.""" | |
langs = list(langs) if langs else ["Persian"] | |
replace_lang_with_code(langs) # in-place | |
# If detection models are loaded, pass them; else, let run_ocr use its internal defaults | |
args = [pil_img], [langs] | |
if det_model and det_processor and rec_model and rec_processor: | |
img_pred: OCRResult = run_ocr([pil_img], [langs], det_model, det_processor, rec_model, rec_processor)[0] | |
else: | |
img_pred: OCRResult = run_ocr([pil_img], [langs])[0] | |
bboxes = [l.bbox for l in img_pred.text_lines] | |
text = [l.text for l in img_pred.text_lines] | |
rec_img = draw_text_on_image(bboxes, text, pil_img.size, langs, has_math="_math" in langs) | |
return rec_img, img_pred | |
# ===================== Input Handling ===================== | |
if "pdf" in filetype: | |
try: | |
pg_cnt = page_count(in_file) | |
except Exception as e: | |
st.error(f"خواندن PDF ناموفق بود: {e}") | |
st.stop() | |
page_number = st.sidebar.number_input("صفحه:", min_value=1, value=1, max_value=pg_cnt) | |
pil_image = get_page_image(in_file, page_number) | |
else: | |
bytes_data = in_file.getvalue() | |
temp_dir = "temp_files" | |
os.makedirs(temp_dir, exist_ok=True) | |
file_path = os.path.join(temp_dir, in_file.name) | |
with open(file_path, "wb") as f: | |
f.write(bytes_data) | |
out_file = os.path.splitext(file_path)[0] + "-1.JPG" | |
try: | |
if auto_border: | |
_ = remove_border(file_path, out_file) | |
pil_image = Image.open(out_file).convert("RGB") | |
else: | |
pil_image = Image.open(file_path).convert("RGB") | |
except Exception as e: | |
st.warning(f"حذف قاب/بازخوانی تصویر با خطا مواجه شد؛ تصویر اصلی استفاده میشود. Error: {e}") | |
pil_image = Image.open(file_path).convert("RGB") | |
# Auto-rotate if enabled | |
pil_image = _apply_auto_rotate(pil_image) | |
# ===================== Buttons Logic ===================== | |
with col1: | |
if text_det_btn and DET_AVAILABLE: | |
try: | |
det_img, det_pred = text_detection(pil_image) | |
st.image(det_img, caption="تشخیص متن (Detection)", use_column_width=True) | |
except Exception as e: | |
st.error(f"خطا در تشخیص متن: {e}") | |
if layout_det_btn and DET_AVAILABLE: | |
try: | |
layout_img, layout_pred = layout_detection(pil_image) | |
st.image(layout_img, caption="آنالیز صفحه (Layout)", use_column_width=True) | |
except Exception as e: | |
st.error(f"خطا در آنالیز صفحه: {e}") | |
if order_det_btn and DET_AVAILABLE: | |
try: | |
order_img, order_pred = order_detection(pil_image) | |
st.image(order_img, caption="ترتیب خوانش (Reading Order)", use_column_width=True) | |
except Exception as e: | |
st.error(f"خطا در ترتیب خوانش: {e}") | |
if text_rec_btn: | |
try: | |
rec_img, ocr_pred = ocr_page(pil_image, languages) | |
text_tab, json_tab = st.tabs(["متن صفحه | Page Text", "JSON"]) | |
with text_tab: | |
st.text("\n".join([p.text for p in ocr_pred.text_lines])) | |
with json_tab: | |
st.json(ocr_pred.model_dump(), expanded=False) | |
except Exception as e: | |
st.error(f"خطا در بازشناسی متن (Recognition): {e}") | |
with col2: | |
st.image(pil_image, caption="تصویر ورودی | Input Preview", use_column_width=True) | |