|
|
|
|
|
import os |
|
import io |
|
import tempfile |
|
from typing import List |
|
|
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
import pypdfium2 |
|
import pytesseract |
|
import streamlit as st |
|
|
|
|
|
runtime_dir = os.path.join(tempfile.gettempdir(), ".streamlit") |
|
os.environ["STREAMLIT_RUNTIME_DIR"] = runtime_dir |
|
os.makedirs(runtime_dir, exist_ok=True) |
|
|
|
|
|
DET_AVAILABLE = True |
|
try: |
|
from surya.detection import batch_text_detection |
|
except Exception: |
|
DET_AVAILABLE = False |
|
|
|
from surya.layout import batch_layout_detection |
|
|
|
|
|
try: |
|
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor |
|
except Exception: |
|
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor |
|
|
|
from surya.model.recognition.model import load_model as load_rec_model |
|
from surya.model.recognition.processor import load_processor as load_rec_processor |
|
|
|
from surya.model.ordering.model import load_model as load_order_model |
|
from surya.model.ordering.processor import load_processor as load_order_processor |
|
from surya.ordering import batch_ordering |
|
|
|
from surya.ocr import run_ocr |
|
from surya.postprocessing.heatmap import draw_polys_on_image |
|
from surya.postprocessing.text import draw_text_on_image |
|
from surya.languages import CODE_TO_LANGUAGE |
|
from surya.input.langs import replace_lang_with_code |
|
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult |
|
|
|
|
|
|
|
|
|
def remove_border(image_path: str, output_path: str) -> np.ndarray: |
|
"""Remove outer border & deskew (perspective) if a rectangular contour is found.""" |
|
image = cv2.imread(image_path) |
|
if image is None: |
|
raise ValueError(f"Cannot read image: {image_path}") |
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) |
|
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if not contours: |
|
cv2.imwrite(output_path, image) |
|
return image |
|
max_contour = max(contours, key=cv2.contourArea) |
|
epsilon = 0.02 * cv2.arcLength(max_contour, True) |
|
approx = cv2.approxPolyDP(max_contour, epsilon, True) |
|
if len(approx) == 4: |
|
pts = approx.reshape(4, 2).astype("float32") |
|
rect = np.zeros((4, 2), dtype="float32") |
|
s = pts.sum(axis=1) |
|
rect[0] = pts[np.argmin(s)] |
|
rect[2] = pts[np.argmax(s)] |
|
diff = np.diff(pts, axis=1) |
|
rect[1] = pts[np.argmin(diff)] |
|
rect[3] = pts[np.argmax(diff)] |
|
(tl, tr, br, bl) = rect |
|
widthA = np.linalg.norm(br - bl) |
|
widthB = np.linalg.norm(tr - tl) |
|
maxWidth = max(int(widthA), int(widthB)) |
|
heightA = np.linalg.norm(tr - br) |
|
heightB = np.linalg.norm(tl - bl) |
|
maxHeight = max(int(heightA), int(heightB)) |
|
dst = np.array([[0, 0], [maxWidth - 1, 0], |
|
[maxWidth - 1, maxHeight - 1], |
|
[0, maxHeight - 1]], dtype="float32") |
|
M = cv2.getPerspectiveTransform(rect, dst) |
|
cropped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) |
|
cv2.imwrite(output_path, cropped) |
|
return cropped |
|
else: |
|
cv2.imwrite(output_path, image) |
|
return image |
|
|
|
|
|
def open_pdf(pdf_file) -> pypdfium2.PdfDocument: |
|
stream = io.BytesIO(pdf_file.getvalue()) |
|
return pypdfium2.PdfDocument(stream) |
|
|
|
|
|
@st.cache_data(show_spinner=False) |
|
def get_page_image(pdf_file, page_num: int, dpi: int = 96) -> Image.Image: |
|
doc = open_pdf(pdf_file) |
|
renderer = doc.render(pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72) |
|
png = list(renderer)[0] |
|
return png.convert("RGB") |
|
|
|
|
|
@st.cache_data(show_spinner=False) |
|
def page_count(pdf_file) -> int: |
|
doc = open_pdf(pdf_file) |
|
return len(doc) |
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="TRUST OCR DEMO", layout="wide") |
|
st.markdown("# TRUST OCR DEMO") |
|
|
|
if not DET_AVAILABLE: |
|
st.warning("⚠️ ماژول تشخیص متن Surya در این محیط در دسترس نیست. OCR کامل کار میکند، اما دکمههای Detection/Layout/Order غیرفعال شدهاند. برای فعالسازی آنها، Surya را به نسخهٔ سازگار پین کنید (راهنما پایین صفحه).") |
|
|
|
|
|
in_file = st.sidebar.file_uploader("فایل PDF یا عکس :", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) |
|
languages = st.sidebar.multiselect( |
|
"زبانها (Languages)", |
|
sorted(list(CODE_TO_LANGUAGE.values())), |
|
default=["Persian"], |
|
max_selections=4 |
|
) |
|
auto_rotate = st.sidebar.toggle("چرخش خودکار (Tesseract OSD)", value=True) |
|
auto_border = st.sidebar.toggle("حذف قاب/کادر تصویر ورودی", value=True) |
|
|
|
|
|
text_det_btn = st.sidebar.button("تشخیص متن (Detection)", disabled=not DET_AVAILABLE) |
|
layout_det_btn = st.sidebar.button("آنالیز صفحه (Layout)", disabled=not DET_AVAILABLE) |
|
order_det_btn = st.sidebar.button("ترتیب خوانش (Reading Order)", disabled=not DET_AVAILABLE) |
|
text_rec_btn = st.sidebar.button("تبدیل به متن (Recognition)") |
|
|
|
if in_file is None: |
|
st.info("یک فایل PDF/عکس از سایدبار انتخاب کنید. | Please upload a file to begin.") |
|
st.stop() |
|
|
|
filetype = in_file.type |
|
|
|
|
|
col2, col1 = st.columns([.5, .5]) |
|
|
|
|
|
|
|
@st.cache_resource(show_spinner=True) |
|
def load_det_cached(): |
|
return load_det_model(checkpoint="vikp/surya_det2"), load_det_processor(checkpoint="vikp/surya_det2") |
|
|
|
@st.cache_resource(show_spinner=True) |
|
def load_rec_cached(): |
|
return load_rec_model(checkpoint="MohammadReza-Halakoo/TrustOCR"), \ |
|
load_rec_processor(checkpoint="MohammadReza-Halakoo/TrustOCR") |
|
|
|
@st.cache_resource(show_spinner=True) |
|
def load_layout_cached(): |
|
return load_det_model(checkpoint="vikp/surya_layout2"), load_det_processor(checkpoint="vikp/surya_layout2") |
|
|
|
@st.cache_resource(show_spinner=True) |
|
def load_order_cached(): |
|
return load_order_model(checkpoint="vikp/surya_order"), load_order_processor(checkpoint="vikp/surya_order") |
|
|
|
|
|
|
|
rec_model, rec_processor = load_rec_cached() |
|
if DET_AVAILABLE: |
|
det_model, det_processor = load_det_cached() |
|
layout_model, layout_processor = load_layout_cached() |
|
order_model, order_processor = load_order_cached() |
|
else: |
|
det_model = det_processor = layout_model = layout_processor = order_model = order_processor = None |
|
|
|
|
|
|
|
|
|
def _apply_auto_rotate(pil_img: Image.Image) -> Image.Image: |
|
"""Auto-rotate using Tesseract OSD if enabled.""" |
|
if not auto_rotate: |
|
return pil_img |
|
try: |
|
osd = pytesseract.image_to_osd(pil_img, output_type=pytesseract.Output.DICT) |
|
angle = int(osd.get("rotate", 0)) |
|
if angle and angle % 360 != 0: |
|
return pil_img.rotate(-angle, expand=True) |
|
return pil_img |
|
except Exception as e: |
|
st.warning(f"OSD rotation failed, continuing without rotation. Error: {e}") |
|
return pil_img |
|
|
|
|
|
def text_detection(pil_img: Image.Image): |
|
pred: TextDetectionResult = batch_text_detection([pil_img], det_model, det_processor)[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
det_img = draw_polys_on_image(polygons, pil_img.copy()) |
|
return det_img, pred |
|
|
|
|
|
def layout_detection(pil_img: Image.Image): |
|
_, det_pred = text_detection(pil_img) |
|
pred: LayoutResult = batch_layout_detection([pil_img], layout_model, layout_processor, [det_pred])[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
labels = [p.label for p in pred.bboxes] |
|
layout_img = draw_polys_on_image(polygons, pil_img.copy(), labels=labels, label_font_size=40) |
|
return layout_img, pred |
|
|
|
|
|
def order_detection(pil_img: Image.Image): |
|
_, layout_pred = layout_detection(pil_img) |
|
bboxes = [l.bbox for l in layout_pred.bboxes] |
|
pred: OrderResult = batch_ordering([pil_img], [bboxes], order_model, order_processor)[0] |
|
polys = [l.polygon for l in pred.bboxes] |
|
positions = [str(l.position) for l in pred.bboxes] |
|
order_img = draw_polys_on_image(polys, pil_img.copy(), labels=positions, label_font_size=40) |
|
return order_img, pred |
|
|
|
|
|
def ocr_page(pil_img: Image.Image, langs: List[str]): |
|
"""Full-page OCR using Surya run_ocr — works without detection import.""" |
|
langs = list(langs) if langs else ["Persian"] |
|
replace_lang_with_code(langs) |
|
|
|
args = [pil_img], [langs] |
|
if det_model and det_processor and rec_model and rec_processor: |
|
img_pred: OCRResult = run_ocr([pil_img], [langs], det_model, det_processor, rec_model, rec_processor)[0] |
|
else: |
|
img_pred: OCRResult = run_ocr([pil_img], [langs])[0] |
|
bboxes = [l.bbox for l in img_pred.text_lines] |
|
text = [l.text for l in img_pred.text_lines] |
|
rec_img = draw_text_on_image(bboxes, text, pil_img.size, langs, has_math="_math" in langs) |
|
return rec_img, img_pred |
|
|
|
|
|
|
|
|
|
if "pdf" in filetype: |
|
try: |
|
pg_cnt = page_count(in_file) |
|
except Exception as e: |
|
st.error(f"خواندن PDF ناموفق بود: {e}") |
|
st.stop() |
|
page_number = st.sidebar.number_input("صفحه:", min_value=1, value=1, max_value=pg_cnt) |
|
pil_image = get_page_image(in_file, page_number) |
|
else: |
|
bytes_data = in_file.getvalue() |
|
temp_dir = "temp_files" |
|
os.makedirs(temp_dir, exist_ok=True) |
|
file_path = os.path.join(temp_dir, in_file.name) |
|
with open(file_path, "wb") as f: |
|
f.write(bytes_data) |
|
out_file = os.path.splitext(file_path)[0] + "-1.JPG" |
|
try: |
|
if auto_border: |
|
_ = remove_border(file_path, out_file) |
|
pil_image = Image.open(out_file).convert("RGB") |
|
else: |
|
pil_image = Image.open(file_path).convert("RGB") |
|
except Exception as e: |
|
st.warning(f"حذف قاب/بازخوانی تصویر با خطا مواجه شد؛ تصویر اصلی استفاده میشود. Error: {e}") |
|
pil_image = Image.open(file_path).convert("RGB") |
|
|
|
|
|
pil_image = _apply_auto_rotate(pil_image) |
|
|
|
|
|
|
|
with col1: |
|
if text_det_btn and DET_AVAILABLE: |
|
try: |
|
det_img, det_pred = text_detection(pil_image) |
|
st.image(det_img, caption="تشخیص متن (Detection)", use_column_width=True) |
|
except Exception as e: |
|
st.error(f"خطا در تشخیص متن: {e}") |
|
|
|
if layout_det_btn and DET_AVAILABLE: |
|
try: |
|
layout_img, layout_pred = layout_detection(pil_image) |
|
st.image(layout_img, caption="آنالیز صفحه (Layout)", use_column_width=True) |
|
except Exception as e: |
|
st.error(f"خطا در آنالیز صفحه: {e}") |
|
|
|
if order_det_btn and DET_AVAILABLE: |
|
try: |
|
order_img, order_pred = order_detection(pil_image) |
|
st.image(order_img, caption="ترتیب خوانش (Reading Order)", use_column_width=True) |
|
except Exception as e: |
|
st.error(f"خطا در ترتیب خوانش: {e}") |
|
|
|
if text_rec_btn: |
|
try: |
|
rec_img, ocr_pred = ocr_page(pil_image, languages) |
|
text_tab, json_tab = st.tabs(["متن صفحه | Page Text", "JSON"]) |
|
with text_tab: |
|
st.text("\n".join([p.text for p in ocr_pred.text_lines])) |
|
with json_tab: |
|
st.json(ocr_pred.model_dump(), expanded=False) |
|
except Exception as e: |
|
st.error(f"خطا در بازشناسی متن (Recognition): {e}") |
|
|
|
with col2: |
|
st.image(pil_image, caption="تصویر ورودی | Input Preview", use_column_width=True) |
|
|