File size: 46,059 Bytes
8b084fc 1eea0ea 3f030a6 aac01c3 755b226 aac01c3 1433836 7c4102b cf7e59c 2ef1dc3 7fc4d76 1eea0ea 1433836 94b3206 22e7155 755b226 cf7e59c 755b226 1433836 8b084fc 7bc6dbb 755b226 1433836 755b226 7c4102b 8b084fc 7bc6dbb 755b226 8b084fc 8936a61 8b084fc 755b226 8b084fc 1eea0ea 755b226 3f030a6 aac01c3 1433836 3f030a6 810036c 1433836 1eea0ea 755b226 1eea0ea 755b226 1eea0ea d5e4264 1eea0ea 7fc4d76 1eea0ea d5e4264 1eea0ea cf7e59c d5e4264 1eea0ea 2ef1dc3 1eea0ea d5e4264 1eea0ea d5e4264 1eea0ea 755b226 2ef1dc3 d5e4264 1eea0ea d5e4264 755b226 d5e4264 755b226 d5e4264 755b226 d5e4264 755b226 d5e4264 755b226 d5e4264 755b226 d5e4264 755b226 7fc4d76 1eea0ea d5e4264 1eea0ea 1433836 d5e4264 755b226 d5e4264 1eea0ea d5e4264 cf7e59c 1eea0ea 8b084fc 1eea0ea 755b226 1eea0ea 94b3206 22e7155 1eea0ea 22e7155 1eea0ea 22e7155 1eea0ea 22e7155 1eea0ea 22e7155 1eea0ea 22e7155 3f030a6 7c4102b 3f030a6 1433836 7c4102b cf7e59c 1433836 3f030a6 7c4102b 3f030a6 1433836 755b226 3f030a6 7c4102b 3f030a6 1433836 7c4102b 1433836 3f030a6 755b226 1eea0ea 755b226 1eea0ea 755b226 22e7155 3f030a6 1433836 d5e4264 755b226 2ef1dc3 1eea0ea 755b226 1eea0ea cf7e59c 1eea0ea cf7e59c 1eea0ea aac01c3 755b226 1eea0ea cf7e59c 1eea0ea 755b226 cf7e59c 755b226 1eea0ea 3f030a6 cf7e59c 1eea0ea d5e4264 1eea0ea 755b226 1eea0ea d5e4264 755b226 d5e4264 cf7e59c 1eea0ea 755b226 1eea0ea 755b226 1eea0ea 755b226 1eea0ea 7c4102b 1eea0ea 7c4102b 1eea0ea 7c4102b 1eea0ea cf7e59c 1eea0ea d5e4264 7c4102b 8b084fc 391866c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
# # app.py — TRUST OCR DEMO (Streamlit) — works even if batch_text_detection is missing
# import os
# import io
# import tempfile
# from typing import List
# import numpy as np
# import cv2
# from PIL import Image
# import pypdfium2
# import pytesseract
# # --- set safe dirs before importing streamlit ---
# safe_home = os.environ.get("HOME") or "/app"
# os.environ["HOME"] = safe_home
# cfg_dir = os.path.join(safe_home, ".streamlit")
# os.makedirs(cfg_dir, exist_ok=True)
# # --- قبل از import streamlit، احیاناً مسیر کش قابلنوشتن:
# import os, tempfile
# os.environ.setdefault("HF_HOME", "/tmp/hf_home")
# os.makedirs(os.environ["HF_HOME"], exist_ok=True)
# import tempfile, os
# temp_dir = os.path.join(tempfile.gettempdir(), "trustocr_temp")
# os.makedirs(temp_dir, exist_ok=True)
# # جای "temp_files" استفاده کن
# # اطمینان از اینکه Streamlit همه فایلها را اینجا مینویسد
# os.environ["STREAMLIT_CONFIG_DIR"] = cfg_dir
# # اگر دوست داری همینجا config.toml بسازی و usage stats را خاموش کنی:
# conf_path = os.path.join(cfg_dir, "config.toml")
# if not os.path.exists(conf_path):
# with open(conf_path, "w", encoding="utf-8") as f:
# f.write("browser.gatherUsageStats = false\n")
# # runtime dir امن
# runtime_dir = os.path.join(tempfile.gettempdir(), ".streamlit")
# os.environ["STREAMLIT_RUNTIME_DIR"] = runtime_dir
# os.makedirs(runtime_dir, exist_ok=True)
# import streamlit as st
# # ===== Safe runtime dir for Streamlit/HF cache =====
# # runtime_dir = os.path.join(tempfile.gettempdir(), ".streamlit")
# # os.environ["STREAMLIT_RUNTIME_DIR"] = runtime_dir
# # os.makedirs(runtime_dir, exist_ok=True)
# # ===== Try to import Surya APIs =====
# DET_AVAILABLE = True
# try:
# from surya.detection import batch_text_detection
# except Exception:
# DET_AVAILABLE = False
# from surya.layout import batch_layout_detection # may still import; we’ll gate usage by DET_AVAILABLE
# # Detection model loaders: segformer (newer) vs model (older)
# try:
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
# except Exception:
# from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
# from surya.model.recognition.model import load_model as load_rec_model
# from surya.model.recognition.processor import load_processor as load_rec_processor
# from surya.model.ordering.model import load_model as load_order_model
# from surya.model.ordering.processor import load_processor as load_order_processor
# from surya.ordering import batch_ordering
# from surya.ocr import run_ocr
# from surya.postprocessing.heatmap import draw_polys_on_image
# from surya.postprocessing.text import draw_text_on_image
# from surya.languages import CODE_TO_LANGUAGE
# from surya.input.langs import replace_lang_with_code
# from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult
# # ===================== Helper Functions =====================
# def remove_border(image_path: str, output_path: str) -> np.ndarray:
# """Remove outer border & deskew (perspective) if a rectangular contour is found."""
# image = cv2.imread(image_path)
# if image is None:
# raise ValueError(f"Cannot read image: {image_path}")
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# if not contours:
# cv2.imwrite(output_path, image)
# return image
# max_contour = max(contours, key=cv2.contourArea)
# epsilon = 0.02 * cv2.arcLength(max_contour, True)
# approx = cv2.approxPolyDP(max_contour, epsilon, True)
# if len(approx) == 4:
# pts = approx.reshape(4, 2).astype("float32")
# rect = np.zeros((4, 2), dtype="float32")
# s = pts.sum(axis=1)
# rect[0] = pts[np.argmin(s)] # tl
# rect[2] = pts[np.argmax(s)] # br
# diff = np.diff(pts, axis=1)
# rect[1] = pts[np.argmin(diff)] # tr
# rect[3] = pts[np.argmax(diff)] # bl
# (tl, tr, br, bl) = rect
# widthA = np.linalg.norm(br - bl)
# widthB = np.linalg.norm(tr - tl)
# maxWidth = max(int(widthA), int(widthB))
# heightA = np.linalg.norm(tr - br)
# heightB = np.linalg.norm(tl - bl)
# maxHeight = max(int(heightA), int(heightB))
# dst = np.array([[0, 0], [maxWidth - 1, 0],
# [maxWidth - 1, maxHeight - 1],
# [0, maxHeight - 1]], dtype="float32")
# M = cv2.getPerspectiveTransform(rect, dst)
# cropped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# cv2.imwrite(output_path, cropped)
# return cropped
# else:
# cv2.imwrite(output_path, image)
# return image
# def open_pdf(pdf_file) -> pypdfium2.PdfDocument:
# stream = io.BytesIO(pdf_file.getvalue())
# return pypdfium2.PdfDocument(stream)
# @st.cache_data(show_spinner=False)
# def get_page_image(pdf_file, page_num: int, dpi: int = 96) -> Image.Image:
# doc = open_pdf(pdf_file)
# renderer = doc.render(pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72)
# png = list(renderer)[0]
# return png.convert("RGB")
# @st.cache_data(show_spinner=False)
# def page_count(pdf_file) -> int:
# doc = open_pdf(pdf_file)
# return len(doc)
# # ===================== Streamlit UI =====================
# st.set_page_config(page_title="TRUST OCR DEMO", layout="wide")
# st.markdown("# TRUST OCR DEMO")
# if not DET_AVAILABLE:
# st.warning("⚠️ ماژول تشخیص متن Surya در این محیط در دسترس نیست. OCR کامل کار میکند، اما دکمههای Detection/Layout/Order غیرفعال شدهاند. برای فعالسازی آنها، Surya را به نسخهٔ سازگار پین کنید (راهنما پایین صفحه).")
# # Sidebar controls
# in_file = st.sidebar.file_uploader("فایل PDF یا عکس :", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
# languages = st.sidebar.multiselect(
# "زبانها (Languages)",
# sorted(list(CODE_TO_LANGUAGE.values())),
# default=["Persian"],
# max_selections=4
# )
# auto_rotate = st.sidebar.toggle("چرخش خودکار (Tesseract OSD)", value=True)
# auto_border = st.sidebar.toggle("حذف قاب/کادر تصویر ورودی", value=True)
# # Buttons (disable some if detection missing)
# text_det_btn = st.sidebar.button("تشخیص متن (Detection)", disabled=not DET_AVAILABLE)
# layout_det_btn = st.sidebar.button("آنالیز صفحه (Layout)", disabled=not DET_AVAILABLE)
# order_det_btn = st.sidebar.button("ترتیب خوانش (Reading Order)", disabled=not DET_AVAILABLE)
# text_rec_btn = st.sidebar.button("تبدیل به متن (Recognition)")
# if in_file is None:
# st.info("یک فایل PDF/عکس از سایدبار انتخاب کنید. | Please upload a file to begin.")
# st.stop()
# filetype = in_file.type
# # Two-column layout (left: outputs / right: input image)
# col2, col1 = st.columns([.5, .5])
# # ===================== Load Models (cached) =====================
# @st.cache_resource(show_spinner=True)
# def load_det_cached():
# return load_det_model(checkpoint="vikp/surya_det2"), load_det_processor(checkpoint="vikp/surya_det2")
# # from huggingface_hub import HfFolder
# # HF_TOKEN = os.environ.get("HF_TOKEN")
# # @st.cache_resource(show_spinner=True)
# # def load_rec_cached():
# # return load_rec_model(checkpoint="MohammadReza-Halakoo/TrustOCR", token=HF_TOKEN), \
# # load_rec_processor(checkpoint="MohammadReza-Halakoo/TrustOCR", token=HF_TOKEN)
# @st.cache_resource(show_spinner=True)
# def load_rec_cached():
# checkpoints = [
# "MohammadReza-Halakoo/TrustOCR", # خصوصی
# "vikp/surya_rec2", # عمومی (fallback)
# ]
# last_err = None
# for ckpt in checkpoints:
# try:
# m = load_rec_model(checkpoint=ckpt)
# p = load_rec_processor(checkpoint=ckpt)
# return m, p
# except Exception as e:
# last_err = e
# st.error(f"Loading recognition checkpoint failed: {last_err}")
# raise last_err
# # @st.cache_resource(show_spinner=True)
# # def load_rec_cached():
# # return load_rec_model(checkpoint="MohammadReza-Halakoo/TrustOCR"), \
# # load_rec_processor(checkpoint="MohammadReza-Halakoo/TrustOCR")
# @st.cache_resource(show_spinner=True)
# def load_layout_cached():
# return load_det_model(checkpoint="vikp/surya_layout2"), load_det_processor(checkpoint="vikp/surya_layout2")
# @st.cache_resource(show_spinner=True)
# def load_order_cached():
# return load_order_model(checkpoint="vikp/surya_order"), load_order_processor(checkpoint="vikp/surya_order")
# # recognition models are enough for run_ocr; detection/layout/order models used only if DET_AVAILABLE
# rec_model, rec_processor = load_rec_cached()
# if DET_AVAILABLE:
# det_model, det_processor = load_det_cached()
# layout_model, layout_processor = load_layout_cached()
# order_model, order_processor = load_order_cached()
# else:
# det_model = det_processor = layout_model = layout_processor = order_model = order_processor = None
# # ===================== High-level Ops =====================
# def _apply_auto_rotate(pil_img: Image.Image) -> Image.Image:
# """Auto-rotate using Tesseract OSD if enabled."""
# if not auto_rotate:
# return pil_img
# try:
# osd = pytesseract.image_to_osd(pil_img, output_type=pytesseract.Output.DICT)
# angle = int(osd.get("rotate", 0)) # 0/90/180/270
# if angle and angle % 360 != 0:
# return pil_img.rotate(-angle, expand=True)
# return pil_img
# except Exception as e:
# st.warning(f"OSD rotation failed, continuing without rotation. Error: {e}")
# return pil_img
# def text_detection(pil_img: Image.Image):
# pred: TextDetectionResult = batch_text_detection([pil_img], det_model, det_processor)[0]
# polygons = [p.polygon for p in pred.bboxes]
# det_img = draw_polys_on_image(polygons, pil_img.copy())
# return det_img, pred
# def layout_detection(pil_img: Image.Image):
# _, det_pred = text_detection(pil_img)
# pred: LayoutResult = batch_layout_detection([pil_img], layout_model, layout_processor, [det_pred])[0]
# polygons = [p.polygon for p in pred.bboxes]
# labels = [p.label for p in pred.bboxes]
# layout_img = draw_polys_on_image(polygons, pil_img.copy(), labels=labels, label_font_size=40)
# return layout_img, pred
# def order_detection(pil_img: Image.Image):
# _, layout_pred = layout_detection(pil_img)
# bboxes = [l.bbox for l in layout_pred.bboxes]
# pred: OrderResult = batch_ordering([pil_img], [bboxes], order_model, order_processor)[0]
# polys = [l.polygon for l in pred.bboxes]
# positions = [str(l.position) for l in pred.bboxes]
# order_img = draw_polys_on_image(polys, pil_img.copy(), labels=positions, label_font_size=40)
# return order_img, pred
# def ocr_page(pil_img: Image.Image, langs: List[str]):
# """Full-page OCR using Surya run_ocr — works without detection import."""
# langs = list(langs) if langs else ["Persian"]
# replace_lang_with_code(langs) # in-place
# # If detection models are loaded, pass them; else, let run_ocr use its internal defaults
# args = [pil_img], [langs]
# if det_model and det_processor and rec_model and rec_processor:
# img_pred: OCRResult = run_ocr([pil_img], [langs], det_model, det_processor, rec_model, rec_processor)[0]
# else:
# img_pred: OCRResult = run_ocr([pil_img], [langs])[0]
# bboxes = [l.bbox for l in img_pred.text_lines]
# text = [l.text for l in img_pred.text_lines]
# rec_img = draw_text_on_image(bboxes, text, pil_img.size, langs, has_math="_math" in langs)
# return rec_img, img_pred
# # ===================== Input Handling =====================
# if "pdf" in filetype:
# try:
# pg_cnt = page_count(in_file)
# except Exception as e:
# st.error(f"خواندن PDF ناموفق بود: {e}")
# st.stop()
# page_number = st.sidebar.number_input("صفحه:", min_value=1, value=1, max_value=pg_cnt)
# pil_image = get_page_image(in_file, page_number)
# else:
# bytes_data = in_file.getvalue()
# temp_dir = "temp_files"
# os.makedirs(temp_dir, exist_ok=True)
# file_path = os.path.join(temp_dir, in_file.name)
# with open(file_path, "wb") as f:
# f.write(bytes_data)
# out_file = os.path.splitext(file_path)[0] + "-1.JPG"
# try:
# if auto_border:
# _ = remove_border(file_path, out_file)
# pil_image = Image.open(out_file).convert("RGB")
# else:
# pil_image = Image.open(file_path).convert("RGB")
# except Exception as e:
# st.warning(f"حذف قاب/بازخوانی تصویر با خطا مواجه شد؛ تصویر اصلی استفاده میشود. Error: {e}")
# pil_image = Image.open(file_path).convert("RGB")
# # Auto-rotate if enabled
# pil_image = _apply_auto_rotate(pil_image)
# # ===================== Buttons Logic =====================
# with col1:
# if text_det_btn and DET_AVAILABLE:
# try:
# det_img, det_pred = text_detection(pil_image)
# st.image(det_img, caption="تشخیص متن (Detection)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در تشخیص متن: {e}")
# if layout_det_btn and DET_AVAILABLE:
# try:
# layout_img, layout_pred = layout_detection(pil_image)
# st.image(layout_img, caption="آنالیز صفحه (Layout)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در آنالیز صفحه: {e}")
# if order_det_btn and DET_AVAILABLE:
# try:
# order_img, order_pred = order_detection(pil_image)
# st.image(order_img, caption="ترتیب خوانش (Reading Order)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در ترتیب خوانش: {e}")
# if text_rec_btn:
# try:
# rec_img, ocr_pred = ocr_page(pil_image, languages)
# text_tab, json_tab = st.tabs(["متن صفحه | Page Text", "JSON"])
# with text_tab:
# st.text("\n".join([p.text for p in ocr_pred.text_lines]))
# with json_tab:
# st.json(ocr_pred.model_dump(), expanded=False)
# except Exception as e:
# st.error(f"خطا در بازشناسی متن (Recognition): {e}")
# with col2:
# st.image(pil_image, caption="تصویر ورودی | Input Preview", use_column_width=True)
# app.py — TRUST OCR DEMO (Streamlit)
# Works on Hugging Face Spaces (no permission/XSRF issues)
# import os
# import io
# import tempfile
# from typing import List
# import numpy as np
# import cv2
# from PIL import Image
# import pypdfium2
# import pytesseract
# # -------------------- Safe, writable dirs & config (BEFORE importing streamlit) --------------------
# # Put everything under /tmp (world-writable on Spaces)
# os.environ.setdefault("HOME", "/tmp")
# os.environ.setdefault("STREAMLIT_CONFIG_DIR", "/tmp/.streamlit")
# os.environ.setdefault("STREAMLIT_RUNTIME_DIR", "/tmp/.streamlit")
# os.environ.setdefault("HF_HOME", "/tmp/hf_home")
# for d in (os.environ["STREAMLIT_CONFIG_DIR"], os.environ["STREAMLIT_RUNTIME_DIR"], os.environ["HF_HOME"]):
# os.makedirs(d, exist_ok=True)
# # Create a minimal config.toml to avoid 403 on uploads and reduce telemetry writes
# conf_path = os.path.join(os.environ["STREAMLIT_CONFIG_DIR"], "config.toml")
# if not os.path.exists(conf_path):
# with open(conf_path, "w", encoding="utf-8") as f:
# f.write(
# "[server]\n"
# "enableXsrfProtection = false\n"
# "enableCORS = false\n"
# "maxUploadSize = 200\n"
# "\n[browser]\n"
# "gatherUsageStats = false\n"
# )
# import streamlit as st
# # -------------------- Surya imports (gated) --------------------
# DET_AVAILABLE = True
# try:
# from surya.detection import batch_text_detection
# except Exception:
# DET_AVAILABLE = False
# from surya.layout import batch_layout_detection # we'll gate usage using DET_AVAILABLE
# # Detection model loaders: try newer segformer, fall back to older
# try:
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
# except Exception:
# from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
# from surya.model.recognition.model import load_model as load_rec_model
# from surya.model.recognition.processor import load_processor as load_rec_processor
# from surya.model.ordering.model import load_model as load_order_model
# from surya.model.ordering.processor import load_processor as load_order_processor
# from surya.ordering import batch_ordering
# from surya.ocr import run_ocr
# from surya.postprocessing.heatmap import draw_polys_on_image
# from surya.postprocessing.text import draw_text_on_image
# from surya.languages import CODE_TO_LANGUAGE
# from surya.input.langs import replace_lang_with_code
# from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult
# # ===================== Helper Functions =====================
# def remove_border(image_path: str, output_path: str) -> np.ndarray:
# """Remove outer border & deskew (perspective) if a rectangular contour is found."""
# image = cv2.imread(image_path)
# if image is None:
# raise ValueError(f"Cannot read image: {image_path}")
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# if not contours:
# cv2.imwrite(output_path, image)
# return image
# max_contour = max(contours, key=cv2.contourArea)
# epsilon = 0.02 * cv2.arcLength(max_contour, True)
# approx = cv2.approxPolyDP(max_contour, epsilon, True)
# if len(approx) == 4:
# pts = approx.reshape(4, 2).astype("float32")
# rect = np.zeros((4, 2), dtype="float32")
# s = pts.sum(axis=1)
# rect[0] = pts[np.argmin(s)] # tl
# rect[2] = pts[np.argmax(s)] # br
# diff = np.diff(pts, axis=1)
# rect[1] = pts[np.argmin(diff)] # tr
# rect[3] = pts[np.argmax(diff)] # bl
# (tl, tr, br, bl) = rect
# widthA = np.linalg.norm(br - bl)
# widthB = np.linalg.norm(tr - tl)
# maxWidth = max(int(widthA), int(widthB))
# heightA = np.linalg.norm(tr - br)
# heightB = np.linalg.norm(tl - bl)
# maxHeight = max(int(heightA), int(heightB))
# dst = np.array([[0, 0], [maxWidth - 1, 0],
# [maxWidth - 1, maxHeight - 1],
# [0, maxHeight - 1]], dtype="float32")
# M = cv2.getPerspectiveTransform(rect, dst)
# cropped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# cv2.imwrite(output_path, cropped)
# return cropped
# else:
# cv2.imwrite(output_path, image)
# return image
# def open_pdf(pdf_file) -> pypdfium2.PdfDocument:
# stream = io.BytesIO(pdf_file.getvalue())
# return pypdfium2.PdfDocument(stream)
# @st.cache_data(show_spinner=False)
# def get_page_image(pdf_file, page_num: int, dpi: int = 96) -> Image.Image:
# doc = open_pdf(pdf_file)
# renderer = doc.render(pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72)
# png = list(renderer)[0]
# return png.convert("RGB")
# @st.cache_data(show_spinner=False)
# def page_count(pdf_file) -> int:
# doc = open_pdf(pdf_file)
# return len(doc)
# # ===================== Streamlit UI =====================
# st.set_page_config(page_title="TRUST OCR DEMO", layout="wide")
# st.markdown("# TRUST OCR DEMO")
# if not DET_AVAILABLE:
# st.warning("⚠️ ماژول تشخیص متن Surya در این محیط در دسترس نیست. OCR کامل کار میکند، اما دکمههای Detection/Layout/Order غیرفعال شدهاند.")
# # Sidebar controls
# in_file = st.sidebar.file_uploader("فایل PDF یا عکس :", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
# languages = st.sidebar.multiselect(
# "زبانها (Languages)",
# sorted(list(CODE_TO_LANGUAGE.values())),
# default=["Persian"],
# max_selections=4
# )
# auto_rotate = st.sidebar.toggle("چرخش خودکار (Tesseract OSD)", value=True)
# auto_border = st.sidebar.toggle("حذف قاب/کادر تصویر ورودی", value=True)
# # Buttons (disable some if detection missing)
# text_det_btn = st.sidebar.button("تشخیص متن (Detection)", disabled=not DET_AVAILABLE)
# layout_det_btn = st.sidebar.button("آنالیز صفحه (Layout)", disabled=not DET_AVAILABLE)
# order_det_btn = st.sidebar.button("ترتیب خوانش (Reading Order)", disabled=not DET_AVAILABLE)
# text_rec_btn = st.sidebar.button("تبدیل به متن (Recognition)")
# if in_file is None:
# st.info("یک فایل PDF/عکس از سایدبار انتخاب کنید. | Please upload a file to begin.")
# st.stop()
# filetype = in_file.type
# # Two-column layout (left: outputs / right: input image)
# col2, col1 = st.columns([.5, .5])
# # ===================== Load Models (cached) =====================
# @st.cache_resource(show_spinner=True)
# def load_det_cached():
# return load_det_model(checkpoint="vikp/surya_det2"), load_det_processor(checkpoint="vikp/surya_det2")
# @st.cache_resource(show_spinner=True)
# def load_rec_cached():
# """Try private checkpoint first, then fall back to public."""
# checkpoints = [
# "MohammadReza-Halakoo/TrustOCR", # private (requires HUGGINGFACE_HUB_TOKEN if private)
# "vikp/surya_rec2", # public fallback
# ]
# last_err = None
# for ckpt in checkpoints:
# try:
# m = load_rec_model(checkpoint=ckpt)
# p = load_rec_processor(checkpoint=ckpt)
# return m, p
# except Exception as e:
# last_err = e
# st.error(f"Loading recognition checkpoint failed: {last_err}")
# raise last_err
# @st.cache_resource(show_spinner=True)
# def load_layout_cached():
# return load_det_model(checkpoint="vikp/surya_layout2"), load_det_processor(checkpoint="vikp/surya_layout2")
# @st.cache_resource(show_spinner=True)
# def load_order_cached():
# return load_order_model(checkpoint="vikp/surya_order"), load_order_processor(checkpoint="vikp/surya_order")
# # recognition models are enough for run_ocr; detection/layout/order models used only if DET_AVAILABLE
# rec_model, rec_processor = load_rec_cached()
# if DET_AVAILABLE:
# det_model, det_processor = load_det_cached()
# layout_model, layout_processor = load_layout_cached()
# order_model, order_processor = load_order_cached()
# else:
# det_model = det_processor = layout_model = layout_processor = order_model = order_processor = None
# # ===================== High-level Ops =====================
# def _apply_auto_rotate(pil_img: Image.Image) -> Image.Image:
# """Auto-rotate using Tesseract OSD if enabled."""
# if not auto_rotate:
# return pil_img
# try:
# osd = pytesseract.image_to_osd(pil_img, output_type=pytesseract.Output.DICT)
# angle = int(osd.get("rotate", 0)) # 0/90/180/270
# if angle and angle % 360 != 0:
# return pil_img.rotate(-angle, expand=True)
# return pil_img
# except Exception as e:
# st.warning(f"OSD rotation failed, continuing without rotation. Error: {e}")
# return pil_img
# def text_detection(pil_img: Image.Image):
# pred: TextDetectionResult = batch_text_detection([pil_img], det_model, det_processor)[0]
# polygons = [p.polygon for p in pred.bboxes]
# det_img = draw_polys_on_image(polygons, pil_img.copy())
# return det_img, pred
# def layout_detection(pil_img: Image.Image):
# _, det_pred = text_detection(pil_img)
# pred: LayoutResult = batch_layout_detection([pil_img], layout_model, layout_processor, [det_pred])[0]
# polygons = [p.polygon for p in pred.bboxes]
# labels = [p.label for p in pred.bboxes]
# layout_img = draw_polys_on_image(polygons, pil_img.copy(), labels=labels, label_font_size=40)
# return layout_img, pred
# def order_detection(pil_img: Image.Image):
# _, layout_pred = layout_detection(pil_img)
# bboxes = [l.bbox for l in layout_pred.bboxes]
# pred: OrderResult = batch_ordering([pil_img], [bboxes], order_model, order_processor)[0]
# polys = [l.polygon for l in pred.bboxes]
# positions = [str(l.position) for l in pred.bboxes]
# order_img = draw_polys_on_image(polys, pil_img.copy(), labels=positions, label_font_size=40)
# return order_img, pred
# def ocr_page(pil_img: Image.Image, langs: List[str]):
# """Full-page OCR using Surya run_ocr — works without detection import."""
# langs = list(langs) if langs else ["Persian"]
# replace_lang_with_code(langs) # in-place
# # If detection/recognition models are loaded, pass them; else rely on Surya defaults
# if det_model and det_processor and rec_model and rec_processor:
# img_pred: OCRResult = run_ocr([pil_img], [langs], det_model, det_processor, rec_model, rec_processor)[0]
# else:
# img_pred: OCRResult = run_ocr([pil_img], [langs])[0]
# bboxes = [l.bbox for l in img_pred.text_lines]
# text = [l.text for l in img_pred.text_lines]
# rec_img = draw_text_on_image(bboxes, text, pil_img.size, langs, has_math="_math" in langs)
# return rec_img, img_pred
# # ===================== Input Handling =====================
# if "pdf" in filetype:
# try:
# pg_cnt = page_count(in_file)
# except Exception as e:
# st.error(f"خواندن PDF ناموفق بود: {e}")
# st.stop()
# page_number = st.sidebar.number_input("صفحه:", min_value=1, value=1, max_value=pg_cnt)
# pil_image = get_page_image(in_file, page_number)
# else:
# bytes_data = in_file.getvalue()
# # use /tmp for writes
# temp_dir = os.path.join(tempfile.gettempdir(), "trustocr_temp")
# os.makedirs(temp_dir, exist_ok=True)
# file_path = os.path.join(temp_dir, in_file.name)
# with open(file_path, "wb") as f:
# f.write(bytes_data)
# out_file = os.path.splitext(file_path)[0] + "-1.JPG"
# try:
# if auto_border:
# _ = remove_border(file_path, out_file)
# pil_image = Image.open(out_file).convert("RGB")
# else:
# pil_image = Image.open(file_path).convert("RGB")
# except Exception as e:
# st.warning(f"حذف قاب/بازخوانی تصویر با خطا مواجه شد؛ تصویر اصلی استفاده میشود. Error: {e}")
# pil_image = Image.open(file_path).convert("RGB")
# # Auto-rotate if enabled
# pil_image = _apply_auto_rotate(pil_image)
# # ===================== Buttons Logic =====================
# with col1:
# if text_det_btn and DET_AVAILABLE:
# try:
# det_img, det_pred = text_detection(pil_image)
# st.image(det_img, caption="تشخیص متن (Detection)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در تشخیص متن: {e}")
# if layout_det_btn and DET_AVAILABLE:
# try:
# layout_img, layout_pred = layout_detection(pil_image)
# st.image(layout_img, caption="آنالیز صفحه (Layout)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در آنالیز صفحه: {e}")
# if order_det_btn and DET_AVAILABLE:
# try:
# order_img, order_pred = order_detection(pil_image)
# st.image(order_img, caption="ترتیب خوانش (Reading Order)", use_column_width=True)
# except Exception as e:
# st.error(f"خطا در ترتیب خوانش: {e}")
# if text_rec_btn:
# try:
# rec_img, ocr_pred = ocr_page(pil_image, languages)
# text_tab, json_tab = st.tabs(["متن صفحه | Page Text", "JSON"])
# with text_tab:
# st.text("\n".join([p.text for p in ocr_pred.text_lines]))
# with json_tab:
# st.json(ocr_pred.model_dump(), expanded=False)
# except Exception as e:
# st.error(f"خطا در بازشناسی متن (Recognition): {e}")
# with col2:
# st.image(pil_image, caption="تصویر ورودی | Input Preview", use_column_width=True)
########################################################################################
# app.py — TRUST OCR DEMO (Streamlit) — personal-recognition-only
# app.py — TRUST OCR DEMO (Streamlit) with personal recognition model, safe dirs, eager attention, lazy order
# app.py — TRUST OCR DEMO (Streamlit) — فقط با مدل شخصی شما
# -*- coding: utf-8 -*-
# TRUST OCR DEMO – Streamlit app (Surya OCR + مدل شخصی)
# -*- coding: utf-8 -*-
# TRUST OCR DEMO – Streamlit app (Surya OCR + مدل شخصی)
# -*- coding: utf-8 -*-
# TRUST OCR DEMO – Streamlit app (Surya OCR + مدل شخصی)
import os
import io
import tempfile
import logging
from typing import List
import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageFont
import pypdfium2
import pytesseract
# -------------------- Logger --------------------
logger = logging.getLogger("trustocr")
if not logger.handlers:
logging.basicConfig(level=logging.INFO)
# -------------------- Safe dirs & config (قبل از import streamlit) --------------------
# ===== Env =====
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.warning("HF token is not set. Add HUGGINGFACE_HUB_TOKEN in Space Settings → Secrets.")
# دایرکتوریهای قابلنوشتن
os.environ.setdefault("HOME", "/tmp")
os.environ.setdefault("STREAMLIT_CONFIG_DIR", "/tmp/.streamlit")
os.environ.setdefault("STREAMLIT_RUNTIME_DIR", "/tmp/.streamlit")
os.environ.setdefault("HF_HOME", "/tmp/hf_home")
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf_home")
# جلوگیری از sdpa backend که با Surya ordering ممکن است ناسازگار باشد
os.environ.setdefault("TRANSFORMERS_ATTENTION_BACKEND", "eager")
# مسیرهای استاتیک/کش به /tmp برای جلوگیری از Permission denied
os.environ.setdefault("STREAMLIT_STATIC_DIR", "/tmp/streamlit_static")
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
for d in (
os.environ["STREAMLIT_CONFIG_DIR"],
os.environ["STREAMLIT_RUNTIME_DIR"],
os.environ["HF_HOME"],
os.environ["STREAMLIT_STATIC_DIR"],
os.environ["MPLCONFIGDIR"],
):
os.makedirs(d, exist_ok=True)
# config.toml مینیمال
conf_path = os.path.join(os.environ["STREAMLIT_CONFIG_DIR"], "config.toml")
if not os.path.exists(conf_path):
with open(conf_path, "w", encoding="utf-8") as f:
f.write(
"[server]\nheadless = true\nenableXsrfProtection = false\nenableCORS = false\nmaxUploadSize = 200\n"
"\n[browser]\ngatherUsageStats = false\n"
)
# توکن HF برای ریپوی خصوصی (اختیاری)
if HF_TOKEN:
os.environ["HUGGINGFACE_HUB_TOKEN"] = HF_TOKEN
try:
from huggingface_hub import login
login(token=HF_TOKEN, add_to_git_credential=False)
logger.info("Logged into Hugging Face hub.")
except Exception as e:
logger.warning(f"HF login skipped/failed: {e}")
import streamlit as st
# -------------------- Surya imports --------------------
DET_AVAILABLE = True
try:
from surya.detection import batch_text_detection
except Exception:
DET_AVAILABLE = False
from surya.layout import batch_layout_detection
# Detection loaders: segformer اولویت دارد
try:
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
except Exception:
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from surya.model.ordering.model import load_model as load_order_model
from surya.model.ordering.processor import load_processor as load_order_processor
from surya.ordering import batch_ordering
from surya.ocr import run_ocr
# مهم: دیگر از surya.postprocessing.* استفاده نمیکنیم تا چیزی در site-packages ننویسد
# from surya.postprocessing.heatmap import draw_polys_on_image
# from surya.postprocessing.text import draw_text_on_image
from surya.languages import CODE_TO_LANGUAGE
from surya.input.langs import replace_lang_with_code
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult
# ===================== Helper Functions =====================
def remove_border(image_path: str, output_path: str) -> np.ndarray:
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Cannot read image: {image_path}")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
cv2.imwrite(output_path, image); return image
max_contour = max(contours, key=cv2.contourArea)
epsilon = 0.02 * cv2.arcLength(max_contour, True)
approx = cv2.approxPolyDP(max_contour, epsilon, True)
if len(approx) == 4:
pts = approx.reshape(4, 2).astype("float32")
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]; rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]; rect[3] = pts[np.argmax(diff)]
(tl, tr, br, bl) = rect
widthA = np.linalg.norm(br - bl); widthB = np.linalg.norm(tr - tl)
maxWidth = max(int(widthA), int(widthB))
heightA = np.linalg.norm(tr - br); heightB = np.linalg.norm(tl - bl)
maxHeight = max(int(heightA), int(heightB))
dst = np.array([[0,0],[maxWidth-1,0],[maxWidth-1,maxHeight-1],[0,maxHeight-1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
cropped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
cv2.imwrite(output_path, cropped); return cropped
else:
cv2.imwrite(output_path, image); return image
def open_pdf(pdf_file) -> pypdfium2.PdfDocument:
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data(show_spinner=False)
def get_page_image(pdf_file, page_num: int, dpi: int = 120) -> Image.Image:
doc = open_pdf(pdf_file)
renderer = doc.render(pypdfium2.PdfBitmap.to_pil, page_indices=[page_num-1], scale=dpi/72)
png = list(renderer)[0]
return png.convert("RGB")
@st.cache_data(show_spinner=False)
def page_count(pdf_file) -> int:
doc = open_pdf(pdf_file)
return len(doc)
# ----- رسم سبک خودمان (بدون وابستگی به surya.postprocessing) -----
def _norm_poly(polygon) -> list[tuple[int, int]]:
arr = np.array(polygon).reshape(-1, 2)
return [(int(x), int(y)) for x, y in arr]
def draw_polys_simple(pil_img: Image.Image, polygons, labels=None) -> Image.Image:
"""Draw polygons (and optional labels) using Pillow only. No disk writes."""
img = pil_img.copy()
draw = ImageDraw.Draw(img)
font = ImageFont.load_default()
for i, poly in enumerate(polygons):
pts = _norm_poly(poly)
# خطوط چندضلعی
draw.polygon(pts, outline=(0, 255, 0))
# برچسب اختیاری
if labels is not None and i < len(labels):
x, y = pts[0]
draw.text((x, max(0, y - 12)), str(labels[i]), fill=(255, 0, 0), font=font)
return img
# ===================== Streamlit UI =====================
st.set_page_config(page_title="TRUST OCR DEMO", layout="wide")
st.markdown("# TRUST OCR DEMO")
if not DET_AVAILABLE:
st.warning("⚠️ ماژول تشخیص متن Surya در این محیط در دسترس نیست. OCR کامل کار میکند، اما دکمههای Detection/Layout/Order غیرفعال شدهاند.")
in_file = st.sidebar.file_uploader("فایل PDF یا عکس :", type=["pdf","png","jpg","jpeg","gif","webp"])
languages = st.sidebar.multiselect("زبانها (Languages)", sorted(list(CODE_TO_LANGUAGE.values())), default=["Persian"], max_selections=4)
auto_rotate = st.sidebar.toggle("چرخش خودکار (Tesseract OSD)", value=True)
auto_border = st.sidebar.toggle("حذف قاب/کادر تصویر ورودی", value=True)
text_det_btn = st.sidebar.button("تشخیص متن (Detection)", disabled=not DET_AVAILABLE)
layout_det_btn = st.sidebar.button("آنالیز صفحه (Layout)", disabled=not DET_AVAILABLE)
order_det_btn = st.sidebar.button("ترتیب خوانش (Reading Order)", disabled=not DET_AVAILABLE)
text_rec_btn = st.sidebar.button("تبدیل به متن (Recognition)")
if in_file is None:
st.info("یک فایل PDF/عکس از سایدبار انتخاب کنید. | Please upload a file to begin.")
st.stop()
filetype = in_file.type
col2, col1 = st.columns([.5, .5])
# ===================== Load Models (cached) =====================
@st.cache_resource(show_spinner=True)
def load_det_cached():
return load_det_model(checkpoint="vikp/surya_det2"), load_det_processor(checkpoint="vikp/surya_det2")
@st.cache_resource(show_spinner=True)
def load_layout_cached():
return load_det_model(checkpoint="vikp/surya_layout2"), load_det_processor(checkpoint="vikp/surya_layout2")
@st.cache_resource(show_spinner=True)
def load_order_cached():
return load_order_model(checkpoint="vikp/surya_order"), load_order_processor(checkpoint="vikp/surya_order")
# ---------- PERSONAL RECOGNITION ONLY ----------
PERSONAL_MODEL_PATH = os.environ.get("TRUSTOCR_PATH") # فولدر لوکال
PERSONAL_HF_REPO = os.environ.get("TRUSTOCR_REPO") # ریپوی مدل HF
@st.cache_resource(show_spinner=True)
def load_rec_personal():
"""
اولویت با مدل شخصی است. اگر تنظیم نبود، به یک مدل عمومی Surya فالبک میشود.
اگر فالبک نمیخواهی، بخش آخر را حذف کن و بهجایش RuntimeError بده.
"""
if PERSONAL_MODEL_PATH and os.path.isdir(PERSONAL_MODEL_PATH):
m = load_rec_model(checkpoint=PERSONAL_MODEL_PATH)
p = load_rec_processor() # نسخه Surya شما بدون ورودی است
return m, p
if PERSONAL_HF_REPO:
m = load_rec_model(checkpoint=PERSONAL_HF_REPO)
p = load_rec_processor() # بدون ورودی
return m, p
# --- فالبک اختیاری به مدل عمومی ---
st.warning("⚠️ مدل شخصی تنظیم نشده؛ از مدل عمومی Surya استفاده میشود (vikp/surya_rec2).")
m = load_rec_model(checkpoint="vikp/surya_rec2")
p = load_rec_processor() # بدون ورودی
return m, p
# Load all
if DET_AVAILABLE:
det_model, det_processor = load_det_cached()
layout_model, layout_processor = load_layout_cached()
try:
order_model, order_processor = load_order_cached()
except Exception as e:
order_model = order_processor = None
st.warning(f"Ordering غیرفعال شد: {e}")
else:
det_model = det_processor = layout_model = layout_processor = order_model = order_processor = None
rec_model, rec_processor = load_rec_personal()
st.caption(f"Recognition source: {os.environ.get('TRUSTOCR_PATH') or os.environ.get('TRUSTOCR_REPO') or 'vikp/surya_rec2'}")
# ===================== Ops =====================
def _apply_auto_rotate(pil_img: Image.Image) -> Image.Image:
if not auto_rotate:
return pil_img
try:
osd = pytesseract.image_to_osd(pil_img, output_type=pytesseract.Output.DICT)
angle = int(osd.get("rotate", 0))
if angle and angle % 360 != 0:
return pil_img.rotate(-angle, expand=True)
return pil_img
except Exception as e:
st.warning(f"OSD rotation failed, continuing without rotation. Error: {e}")
return pil_img
def text_detection(pil_img: Image.Image):
pred: TextDetectionResult = batch_text_detection([pil_img], det_model, det_processor)[0]
polygons = [p.polygon for p in pred.bboxes]
det_img = draw_polys_simple(pil_img, polygons) # ← نسخه سبک خودمان
return det_img, pred
def layout_detection(pil_img: Image.Image):
_, det_pred = text_detection(pil_img)
pred: LayoutResult = batch_layout_detection([pil_img], layout_model, layout_processor, [det_pred])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [p.label for p in pred.bboxes]
layout_img = draw_polys_simple(pil_img, polygons, labels=labels) # ← نسخه سبک خودمان
return layout_img, pred
def order_detection(pil_img: Image.Image):
if order_model is None or order_processor is None:
raise RuntimeError("Ordering model not available.")
_, layout_pred = layout_detection(pil_img)
bboxes = [l.bbox for l in layout_pred.bboxes]
pred: OrderResult = batch_ordering([pil_img], [bboxes], order_model, order_processor)[0]
polys = [l.polygon for l in pred.bboxes]
positions = [str(l.position) for l in pred.bboxes]
order_img = draw_polys_simple(pil_img, polys, labels=positions) # ← نسخه سبک خودمان
return order_img, pred
def ocr_page(pil_img: Image.Image, langs: List[str]):
langs = list(langs) if langs else ["Persian"]
replace_lang_with_code(langs)
# مهم: دیگر draw_text_on_image نمیسازیم تا نیازی به فونت/استاتیک نباشد
if det_model and det_processor and rec_model and rec_processor:
img_pred: OCRResult = run_ocr([pil_img], [langs], det_model, det_processor, rec_model, rec_processor)[0]
else:
img_pred: OCRResult = run_ocr([pil_img], [langs], rec_model=rec_model, rec_processor=rec_processor)[0]
# برای نمایش، فقط متن را میگذاریم؛ تصویر چسبانده نمیشود تا وابستگی به فونت نباشد
return None, img_pred
# ===================== Input Handling =====================
if "pdf" in filetype:
try:
pg_cnt = page_count(in_file)
except Exception as e:
st.error(f"خواندن PDF ناموفق بود: {e}"); st.stop()
page_number = st.sidebar.number_input("صفحه:", min_value=1, value=1, max_value=pg_cnt)
pil_image = get_page_image(in_file, page_number)
else:
bytes_data = in_file.getvalue()
temp_dir = os.path.join(tempfile.gettempdir(), "trustocr_temp"); os.makedirs(temp_dir, exist_ok=True)
file_path = os.path.join(temp_dir, in_file.name)
with open(file_path, "wb") as f: f.write(bytes_data)
out_file = os.path.splitext(file_path)[0] + "-1.JPG"
try:
if auto_border:
_ = remove_border(file_path, out_file)
pil_image = Image.open(out_file).convert("RGB")
else:
pil_image = Image.open(file_path).convert("RGB")
except Exception as e:
st.warning(f"حذف قاب/بازخوانی تصویر با خطا؛ تصویر اصلی استفاده میشود. Error: {e}")
pil_image = Image.open(file_path).convert("RGB")
# Auto-rotate
pil_image = _apply_auto_rotate(pil_image)
# ===================== Buttons =====================
with col1:
if text_det_btn and DET_AVAILABLE:
try:
det_img, det_pred = text_detection(pil_image)
st.image(det_img, caption="تشخیص متن (Detection)", use_container_width=True)
except Exception as e:
st.error(f"خطا در تشخیص متن: {e}")
if layout_det_btn and DET_AVAILABLE:
try:
layout_img, layout_pred = layout_detection(pil_image)
st.image(layout_img, caption="آنالیز صفحه (Layout)", use_container_width=True)
except Exception as e:
st.error(f"خطا در آنالیز صفحه: {e}")
if order_det_btn and DET_AVAILABLE:
try:
order_img, order_pred = order_detection(pil_image)
st.image(order_img, caption="ترتیب خوانش (Reading Order)", use_container_width=True)
except Exception as e:
st.error(f"خطا در ترتیب خوانش: {e}")
if text_rec_btn:
try:
rec_img, ocr_pred = ocr_page(pil_image, languages)
text_tab, json_tab = st.tabs(["متن صفحه | Page Text", "JSON"])
with text_tab:
st.text("\n".join([p.text for p in ocr_pred.text_lines]))
with json_tab:
st.json(ocr_pred.model_dump(), expanded=False)
except Exception as e:
st.error(f"خطا در بازشناسی متن (Recognition): {e}")
with col2:
st.image(pil_image, caption="تصویر ورودی | Input Preview", use_container_width=True)
|