File size: 8,298 Bytes
203ba9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d4a12
203ba9b
62d4a12
203ba9b
 
62d4a12
203ba9b
 
 
 
 
 
 
 
62d4a12
 
 
203ba9b
 
 
 
 
 
62d4a12
203ba9b
 
6a52aab
203ba9b
 
 
6a52aab
 
203ba9b
 
 
 
 
 
 
62d4a12
 
 
203ba9b
 
 
 
6a52aab
 
 
203ba9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9aadc2
203ba9b
 
 
62d4a12
a9aadc2
 
 
 
 
 
 
 
 
 
 
 
 
62d4a12
203ba9b
 
 
62d4a12
203ba9b
 
 
 
 
e4cac44
 
 
203ba9b
 
 
 
 
 
 
 
 
 
 
62d4a12
 
203ba9b
 
 
 
62d4a12
203ba9b
 
 
 
 
 
6a52aab
203ba9b
 
 
 
62d4a12
 
203ba9b
a9aadc2
 
 
203ba9b
 
6a52aab
a9aadc2
203ba9b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from transformers import AutoTokenizer
from tqdm import tqdm
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from pathlib import Path

initial_list_of_models = [
    "Xenova/gpt-4o",
    "NousResearch/Meta-Llama-3-8B",
    "CohereForAI/c4ai-command-r-v01",
    "CohereForAI/c4ai-command-r-plus",
    "core42/jais-13b",
]

dataset = load_dataset("MohamedRashad/rasaif-translations", split="train")["arabic"]

dataframe_path = Path(__file__).parent / "arabic_tokenizers_leaderboard.jsonl"
if dataframe_path.exists():
    df = pd.read_json(dataframe_path, lines=True)
else:
    df = pd.DataFrame(columns=["📛 Models", "➕ Total Number of Tokens", "📘 Vocab Size", "Tokenizer Class"])

for model_name in tqdm(initial_list_of_models):
    if model_name in df["📛 Models"].values:
        continue
    tokenizer = AutoTokenizer.from_pretrained(
        model_name, use_fast=True, trust_remote_code=True
    )
    vocab_size = tokenizer.vocab_size
    number_of_tokens = sum([len(x) for x in tokenizer(dataset).input_ids])
    df = df._append(
        {
            "📛 Models": model_name,
            "📘 Vocab Size": vocab_size,
            "➕ Total Number of Tokens": number_of_tokens,
            "Tokenizer Class": tokenizer.__class__.__name__,
        },
        ignore_index=True,
    )

# Sort the dataframe by the number of tokens
df = df.sort_values(by="➕ Total Number of Tokens", ascending=True)

# Save the dataframe to a csv file
df.to_json(dataframe_path, lines=True, orient="records", force_ascii=False)

def submit(model_name):
    global df
    if model_name in df["📛 Models"].values:
        return gr.Dataframe(df), gr.BarPlot(df), gr.Dropdown(choices=df["📛 Models"].tolist())
    tokenizer = AutoTokenizer.from_pretrained(
        model_name, use_fast=True, trust_remote_code=True
    )
    vocab_size = tokenizer.vocab_size
    number_of_tokens = sum([len(x) for x in tokenizer(dataset).input_ids])
    df = df._append(
        {
            "📛 Models": model_name,
            "➕ Total Number of Tokens": number_of_tokens,
            "📘 Vocab Size": vocab_size,
            "Tokenizer Class": tokenizer.__class__.__name__,
        },
        ignore_index=True,
    )
    df = df.sort_values(by="➕ Total Number of Tokens", ascending=True)
    df.to_json(dataframe_path, lines=True, orient="records", force_ascii=False)
    return gr.Dataframe(df), gr.BarPlot(df), gr.Dropdown(choices=df["📛 Models"].tolist())

def generate_distinct_colors(n):
    """Generate n visually distinct colors in hexadecimal format."""
    if n > 256**3:
        raise ValueError("Cannot generate more than 16,777,216 unique colors.")
    
    # To ensure colors are distinct, calculate an appropriate distance between colors
    # The cube root of 256**3 (total colors) divided by n gives a crude initial spacing estimate
    spacing = int((256 * 256 * 256)**(1/3) / n**(1/3))
    max_val = 256 - spacing
    
    # Set to keep track of used colors
    used_colors = set()
    
    # List to store the result colors
    result = []
    
    attempts = 0
    while len(result) < n:
        # Generate a color with a random start and controlled spacing
        r = random.randint(0, max_val)
        g = random.randint(0, max_val)
        b = random.randint(0, max_val)
        
        # Scale up by spacing to ensure minimum distance between colors
        r = min(255, r * spacing)
        g = min(255, g * spacing)
        b = min(255, b * spacing)
        
        # Format the color in hexadecimal
        color = f"#{r:02X}{g:02X}{b:02X}"
        
        # Ensure this color hasn't been used
        if color not in used_colors:
            used_colors.add(color)
            result.append(color)
        else:
            attempts += 1
            if attempts > 50:
                # Dynamically adjust spacing if stuck
                spacing = max(1, spacing - 1)
                max_val = 256 - spacing
                attempts = 0
    
    return result

def decode_bpe_tokens(tokens):
    fixed_tokens = []
    for token in tokens:
        # Check if the token starts with the special BPE space character 'Ġ'
        if token.startswith('Ġ'):
            # Process the rest of the token
            try:
                # Decode the rest of the token from UTF-8 bytes understood as Latin-1 characters
                fixed_token = ' ' + token[1:].encode('utf-8').decode('utf-8')
            except UnicodeDecodeError:
                fixed_token = token  # Use the original token if decoding fails
        else:
            try:
                # Directly encode and decode without misinterpretation steps
                fixed_token = token.encode('utf-8').decode('utf-8')
            except UnicodeDecodeError:
                fixed_token = token  # Use the original token if decoding fails
        fixed_tokens.append(fixed_token)
    return fixed_tokens

def tokenize_text(text, chosen_model, better_tokenization=False):
    tokenizer = AutoTokenizer.from_pretrained(chosen_model)
    tokenized_text = decode_bpe_tokens(tokenizer.tokenize(text))
    random_colors = generate_distinct_colors(len(tokenized_text))

    if better_tokenization:
        final_tokenized_text = []
        for token in tokenized_text:
            correct_tokenized_text = ""
            for char in text:
                correct_tokenized_text += char 
                current_token = decode_bpe_tokens(tokenizer.tokenize(correct_tokenized_text))
                if current_token[0] == token:
                    final_tokenized_text.append(correct_tokenized_text)
                    text = text[len(correct_tokenized_text):]
                    break
    else:
        final_tokenized_text = tokenized_text
    print(final_tokenized_text)

    output = []
    color_map = {}
    for idx, token in enumerate(final_tokenized_text):
        output.append((token, str(idx)))
        color_map[str(idx+1)] = random_colors[idx % len(random_colors)]

    return gr.HighlightedText(output, color_map)

leaderboard_description = """The `Total Number of Tokens` in this leaderboard is based on the total number of tokens summed on the Arabic section of [rasaif-translations](https://huggingface.co/datasets/MohamedRashad/rasaif-translations) dataset.
This dataset was chosen because it represents Arabic Fusha text in a small and consentrated manner.
A tokenizer that scores high in this leaderboard will be efficient in parsing Arabic in its different dialects and forms.
"""

with gr.Blocks() as demo:
    gr.HTML("<center><h1>Arabic Tokenizers Leaderboard</h1></center>")
    gr.Markdown("## What is the best tokenizer for Arabic?")
    gr.Markdown(leaderboard_description)
    with gr.Tab(label="Leaderboard"):
        dataframe = gr.Dataframe(df)
        with gr.Accordion("Barplot", open=False):
            barplot = gr.BarPlot(
                df,
                x="📛 Models",
                y="➕ Total Number of Tokens",
                x_title=" ",
                y_title=" ",
                width=1000,
                height=400,
                tooltip=["📘 Vocab Size", "➕ Total Number of Tokens"],
                vertical=False,
                x_label_angle=30,
            )
        model_name = gr.Textbox(
            label="Model Name from Hugging Face (e.g. Xenova/gpt-4o)"
        )
        submit_new_model_btn = gr.Button(value="Submit", variant="primary")
    with gr.Tab(label="Try tokenizers"):
        text = gr.Textbox(label="Enter a text", lines=5, value="السلام عليكم ورحمة الله", rtl=True, text_align="right")
        dropdown = gr.Dropdown(
            label="Select a model",
            choices=df["📛 Models"].tolist(),
            value=df["📛 Models"].tolist()[0],
        )
        with gr.Row():
            submit_text_btn = gr.Button(value="Submit", variant="primary", scale=3)
            checkbox = gr.Checkbox(label="Better tokenization for Arabic Text", value=False, scale=1)
        tokenized_textbox = gr.HighlightedText(label="Tokenized text")

    submit_new_model_btn.click(submit, model_name, outputs=[dataframe, barplot, dropdown])
    submit_text_btn.click(tokenize_text, inputs=[text, dropdown, checkbox], outputs=[tokenized_textbox])


demo.launch()