Spaces:
Running
Running
updated yolo model
Browse files- .gitignore +1 -1
- app.py +21 -83
- hp/utils.py +81 -0
- hp/visualizer.py +102 -0
- hp/yolo_results.py +44 -0
- sample_images/image_two.jpg +0 -0
- yolo-human-parse-v2.pt +3 -0
- yolo/BodyMask.py +0 -210
- yolo/utils.py +0 -298
.gitignore
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
gradio_cached_examples/
|
3 |
checkpoint-*
|
4 |
*/example.ipynb
|
|
|
1 |
+
*/**.DS_Store
|
2 |
gradio_cached_examples/
|
3 |
checkpoint-*
|
4 |
*/example.ipynb
|
app.py
CHANGED
@@ -1,99 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from
|
4 |
-
from yolo.BodyMask import BodyMask
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
from matplotlib import patches
|
8 |
-
from skimage.transform import resize
|
9 |
from PIL import Image
|
10 |
import io
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
def display_image_with_masks(image, results, cols=4):
|
16 |
-
# Convert PIL Image to numpy array
|
17 |
-
image_np = np.array(image)
|
18 |
-
|
19 |
-
# Check image dimensions
|
20 |
-
if image_np.ndim != 3 or image_np.shape[2] != 3:
|
21 |
-
raise ValueError("Image must be a 3-dimensional array with 3 color channels")
|
22 |
-
|
23 |
-
# Number of masks
|
24 |
-
n = len(results)
|
25 |
-
rows = (n + cols - 1) // cols # Calculate required number of rows
|
26 |
-
|
27 |
-
# Setting up the plot
|
28 |
-
fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 5 * rows))
|
29 |
-
axs = np.array(axs).reshape(-1) # Flatten axs array for easy indexing
|
30 |
-
|
31 |
-
for i, result in enumerate(results):
|
32 |
-
mask = result["mask"]
|
33 |
-
label = result["label"]
|
34 |
-
score = float(result["score"])
|
35 |
-
|
36 |
-
# Convert PIL mask to numpy array and resize if necessary
|
37 |
-
mask_np = np.array(mask)
|
38 |
-
if mask_np.shape != image_np.shape[:2]:
|
39 |
-
mask_np = resize(
|
40 |
-
mask_np, image_np.shape[:2], mode="constant", anti_aliasing=False
|
41 |
-
)
|
42 |
-
mask_np = (mask_np > 0.5).astype(
|
43 |
-
np.uint8
|
44 |
-
) # Threshold back to binary after resize
|
45 |
-
|
46 |
-
# Create an overlay where mask is True
|
47 |
-
overlay = np.zeros_like(image_np)
|
48 |
-
overlay[mask_np > 0] = [0, 0, 255] # Applying blue color on the mask area
|
49 |
-
|
50 |
-
# Combine the image and the overlay
|
51 |
-
combined = image_np.copy()
|
52 |
-
indices = np.where(mask_np > 0)
|
53 |
-
combined[indices] = combined[indices] * 0.5 + overlay[indices] * 0.5
|
54 |
-
|
55 |
-
# Show the combined image
|
56 |
-
ax = axs[i]
|
57 |
-
ax.imshow(combined)
|
58 |
-
ax.axis("off")
|
59 |
-
ax.set_title(f"Label: {label}, Score: {score:.2f}", fontsize=12)
|
60 |
-
rect = patches.Rectangle(
|
61 |
-
(0, 0),
|
62 |
-
image_np.shape[1],
|
63 |
-
image_np.shape[0],
|
64 |
-
linewidth=1,
|
65 |
-
edgecolor="r",
|
66 |
-
facecolor="none",
|
67 |
-
)
|
68 |
-
ax.add_patch(rect)
|
69 |
-
|
70 |
-
# Hide unused subplots if the total number of masks is not a multiple of cols
|
71 |
-
for idx in range(i + 1, rows * cols):
|
72 |
-
axs[idx].axis("off")
|
73 |
-
|
74 |
-
plt.tight_layout()
|
75 |
-
|
76 |
-
# Save the plot to a bytes buffer
|
77 |
-
buf = io.BytesIO()
|
78 |
-
plt.savefig(buf, format="png")
|
79 |
-
buf.seek(0)
|
80 |
|
81 |
-
|
82 |
-
plt.close(fig)
|
83 |
|
84 |
-
return buf
|
85 |
|
|
|
|
|
|
|
86 |
|
87 |
-
def perform_segmentation(input_image):
|
88 |
-
bm = BodyMask(input_image, model_id=model_id, resize_to=640)
|
89 |
-
if bm.body_mask is None:
|
90 |
-
return input_image # Return the original image if no mask is found
|
91 |
-
results = bm.results
|
92 |
-
buf = display_image_with_masks(input_image, results)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
# Get example images
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from hp.yolo_results import YOLOResults
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
from matplotlib import patches
|
|
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
+
from functools import lru_cache
|
10 |
+
import logging
|
11 |
+
from ultralytics import YOLO
|
12 |
+
from hp.utils import load_resize_image
|
13 |
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
model_id = os.path.abspath("yolo-human-parse-v2.pt")
|
|
|
18 |
|
|
|
19 |
|
20 |
+
@lru_cache
|
21 |
+
def get_model(model_id=model_id):
|
22 |
+
return YOLO(model_id, task="segment")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def perform_segmentation(image):
|
26 |
+
model = get_model()
|
27 |
+
image = load_resize_image(image, 1024)
|
28 |
+
imgsz = max(image.size)
|
29 |
+
result = model(image, imgsz=imgsz, retina_masks=True)
|
30 |
+
if not bool(result):
|
31 |
+
logger.info("No Masks or Boxes Found")
|
32 |
+
return image
|
33 |
+
result = YOLOResults(image, result)
|
34 |
+
return result.visualize(return_image=True)
|
35 |
|
36 |
|
37 |
# Get example images
|
hp/utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from typing import List, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
from ultralytics import YOLO
|
8 |
+
|
9 |
+
from hp.visualizer import visualizer
|
10 |
+
|
11 |
+
|
12 |
+
def resize_image_pil(image_pil, max_size=1024):
|
13 |
+
# Ensure image is in RGB
|
14 |
+
if image_pil.mode != "RGB":
|
15 |
+
image_pil = image_pil.convert("RGB")
|
16 |
+
|
17 |
+
# Calculate new dimensions preserving aspect ratio
|
18 |
+
width, height = image_pil.size
|
19 |
+
scale = min(max_size / width, max_size / height)
|
20 |
+
new_width = int(width * scale)
|
21 |
+
new_height = int(height * scale)
|
22 |
+
image_pil = image_pil.resize((new_width, new_height), Image.LANCZOS)
|
23 |
+
|
24 |
+
# Calculate padding needed to reach 1024x1024
|
25 |
+
pad_width = (max_size - new_width) // 2
|
26 |
+
pad_height = (max_size - new_height) // 2
|
27 |
+
|
28 |
+
# Apply padding symmetrically
|
29 |
+
image_pil = ImageOps.expand(
|
30 |
+
image_pil,
|
31 |
+
border=(
|
32 |
+
pad_width,
|
33 |
+
pad_height,
|
34 |
+
max_size - new_width - pad_width,
|
35 |
+
max_size - new_height - pad_height,
|
36 |
+
),
|
37 |
+
fill=(0, 0, 0),
|
38 |
+
)
|
39 |
+
|
40 |
+
return image_pil
|
41 |
+
|
42 |
+
|
43 |
+
def load_resize_image(image_path: str | Image.Image, size: int) -> Image.Image:
|
44 |
+
if isinstance(image_path, str):
|
45 |
+
image_pil = Image.open(image_path).convert("RGB")
|
46 |
+
else:
|
47 |
+
image_pil = image_path.convert("RGB")
|
48 |
+
|
49 |
+
image_pil = resize_image_pil(image_pil, size)
|
50 |
+
return image_pil
|
51 |
+
|
52 |
+
|
53 |
+
def unload_mask(mask):
|
54 |
+
mask = mask.cpu().numpy().squeeze()
|
55 |
+
mask = mask.astype(np.uint8) * 255
|
56 |
+
return Image.fromarray(mask)
|
57 |
+
|
58 |
+
|
59 |
+
def unload_masks(masks):
|
60 |
+
return [unload_mask(mask) for mask in masks]
|
61 |
+
|
62 |
+
|
63 |
+
def unload_box(box):
|
64 |
+
return box.cpu().numpy().tolist()
|
65 |
+
|
66 |
+
|
67 |
+
def unload_boxes(boxes):
|
68 |
+
return [unload_box(box) for box in boxes]
|
69 |
+
|
70 |
+
|
71 |
+
def format_scores(scores):
|
72 |
+
return scores.squeeze().cpu().numpy().tolist()
|
73 |
+
|
74 |
+
|
75 |
+
def format_results(labels, scores, boxes, masks):
|
76 |
+
results_dict = []
|
77 |
+
for row in zip(labels, scores, boxes, masks):
|
78 |
+
label, score, box, mask = row
|
79 |
+
results_row = dict(label=label, score=score, mask=mask, box=box)
|
80 |
+
results_dict.append(results_row)
|
81 |
+
return results_dict
|
hp/visualizer.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.patches as patches
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
|
7 |
+
|
8 |
+
def visualizer(
|
9 |
+
image,
|
10 |
+
results,
|
11 |
+
box_label="box",
|
12 |
+
mask_label="mask",
|
13 |
+
prompt_label="prompt",
|
14 |
+
score_label="score",
|
15 |
+
cols=4,
|
16 |
+
return_image=False,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
# Convert PIL Image to numpy array
|
20 |
+
image_np = np.array(image)
|
21 |
+
|
22 |
+
# Check image dimensions
|
23 |
+
if image_np.ndim != 3:
|
24 |
+
raise ValueError("Image must be a 3-dimensional array")
|
25 |
+
|
26 |
+
# Number of results
|
27 |
+
n = len(results)
|
28 |
+
rows = (n + cols - 1) // cols # Calculate required number of rows
|
29 |
+
|
30 |
+
# Setting up the plot
|
31 |
+
fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 5 * rows))
|
32 |
+
if n == 1:
|
33 |
+
axs = np.array([[axs]])
|
34 |
+
elif rows == 1:
|
35 |
+
axs = np.array([axs])
|
36 |
+
else:
|
37 |
+
axs = axs.reshape(rows, cols)
|
38 |
+
|
39 |
+
for i, result in enumerate(results):
|
40 |
+
label = result[prompt_label]
|
41 |
+
score = float(result[score_label])
|
42 |
+
|
43 |
+
row = i // cols
|
44 |
+
col = i % cols
|
45 |
+
|
46 |
+
# Create a copy of the original image
|
47 |
+
combined = image_np.copy()
|
48 |
+
|
49 |
+
# Draw mask if present
|
50 |
+
if mask_label in result:
|
51 |
+
mask = result[mask_label]
|
52 |
+
# Convert PIL mask to numpy array
|
53 |
+
mask_np = np.array(mask)
|
54 |
+
|
55 |
+
# Check mask dimensions
|
56 |
+
if mask_np.ndim != 2:
|
57 |
+
raise ValueError("Mask must be a 2-dimensional array")
|
58 |
+
|
59 |
+
# Create an overlay where mask is True
|
60 |
+
overlay = np.zeros_like(image_np)
|
61 |
+
overlay[mask_np > 0] = [0, 0, 255] # Applying blue color on the mask area
|
62 |
+
|
63 |
+
# Combine the image and the overlay
|
64 |
+
indices = np.where(mask_np > 0)
|
65 |
+
combined[indices] = combined[indices] * 0.5 + overlay[indices] * 0.5
|
66 |
+
|
67 |
+
# Show the combined image
|
68 |
+
ax = axs[row, col]
|
69 |
+
ax.imshow(combined)
|
70 |
+
ax.axis("off")
|
71 |
+
ax.set_title(f"Label: {label}, Score: {score:.2f}", fontsize=12)
|
72 |
+
|
73 |
+
# Draw bounding box if present
|
74 |
+
if box_label in result:
|
75 |
+
bbox = result[box_label]
|
76 |
+
x1, y1, x2, y2 = bbox
|
77 |
+
rect = patches.Rectangle(
|
78 |
+
(x1, y1), x2 - x1, y2 - y1, linewidth=2, edgecolor="r", facecolor="none"
|
79 |
+
)
|
80 |
+
ax.add_patch(rect)
|
81 |
+
|
82 |
+
# Hide unused subplots if the total number of results is not a multiple of cols
|
83 |
+
for idx in range(i + 1, rows * cols):
|
84 |
+
row = idx // cols
|
85 |
+
col = idx % cols
|
86 |
+
axs[row, col].axis("off")
|
87 |
+
|
88 |
+
plt.tight_layout()
|
89 |
+
|
90 |
+
if return_image:
|
91 |
+
# Save the plot to a bytes buffer
|
92 |
+
buf = io.BytesIO()
|
93 |
+
plt.savefig(buf, format="png")
|
94 |
+
buf.seek(0)
|
95 |
+
|
96 |
+
# Clear the current figure
|
97 |
+
plt.close(fig)
|
98 |
+
|
99 |
+
# Return the image as a PIL Image object
|
100 |
+
return Image.open(buf)
|
101 |
+
else:
|
102 |
+
plt.show()
|
hp/yolo_results.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
from PIL import Image
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
from hp.visualizer import visualizer
|
6 |
+
from .utils import *
|
7 |
+
|
8 |
+
|
9 |
+
class YOLOResults:
|
10 |
+
def __init__(self, image: Union[Image.Image | str], result: List):
|
11 |
+
self.image = image
|
12 |
+
self.masks = None
|
13 |
+
self.boxes = None
|
14 |
+
self.scores = None
|
15 |
+
self.labels = None
|
16 |
+
self.labels_dict = None
|
17 |
+
self.result = self.unload(result[0])
|
18 |
+
self.formatted_results = format_results(
|
19 |
+
self.labels,
|
20 |
+
self.scores,
|
21 |
+
self.boxes,
|
22 |
+
self.masks,
|
23 |
+
)
|
24 |
+
|
25 |
+
def unload(self, result):
|
26 |
+
assert (
|
27 |
+
bool(result) and hasattr(result, "masks") and hasattr(result, "boxes")
|
28 |
+
), "No Masks or Boxes Found"
|
29 |
+
self.masks = unload_masks(result.masks.data)
|
30 |
+
self.boxes = unload_boxes(result.boxes.xyxy)
|
31 |
+
self.scores = format_scores(result.boxes.conf)
|
32 |
+
self.labels = list(result.names.values())
|
33 |
+
self.labels_dict = result.names
|
34 |
+
det_ids = result.boxes.cls
|
35 |
+
det_ids = [int(l.item()) for l in det_ids]
|
36 |
+
self.labels = [self.labels_dict[i] for i in det_ids]
|
37 |
+
|
38 |
+
def visualize(self, return_image=False):
|
39 |
+
return visualizer(
|
40 |
+
self.image,
|
41 |
+
self.formatted_results,
|
42 |
+
prompt_label="label",
|
43 |
+
return_image=return_image,
|
44 |
+
)
|
sample_images/image_two.jpg
CHANGED
![]() |
![]() |
yolo-human-parse-v2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1a5e777a3e980c26d70067246e7eb11749294af43fa355ba90af4c3076d849f
|
3 |
+
size 13498800
|
yolo/BodyMask.py
DELETED
@@ -1,210 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from functools import lru_cache
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
from diffusers.utils import load_image
|
8 |
-
from PIL import Image, ImageChops, ImageFilter
|
9 |
-
from ultralytics import YOLO
|
10 |
-
from .utils import *
|
11 |
-
|
12 |
-
|
13 |
-
def dilate_mask(mask, dilate_factor=6, blur_radius=2, erosion_factor=2):
|
14 |
-
if not mask:
|
15 |
-
return None
|
16 |
-
# Convert PIL image to NumPy array if necessary
|
17 |
-
if isinstance(mask, Image.Image):
|
18 |
-
mask = np.array(mask)
|
19 |
-
|
20 |
-
# Ensure mask is in uint8 format
|
21 |
-
mask = mask.astype(np.uint8)
|
22 |
-
|
23 |
-
# Apply dilation
|
24 |
-
kernel = np.ones((dilate_factor, dilate_factor), np.uint8)
|
25 |
-
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
|
26 |
-
|
27 |
-
# Apply erosion for refinement
|
28 |
-
kernel = np.ones((erosion_factor, erosion_factor), np.uint8)
|
29 |
-
eroded_mask = cv2.erode(dilated_mask, kernel, iterations=1)
|
30 |
-
|
31 |
-
# Apply Gaussian blur to smooth the edges
|
32 |
-
blurred_mask = cv2.GaussianBlur(
|
33 |
-
eroded_mask, (2 * blur_radius + 1, 2 * blur_radius + 1), 0
|
34 |
-
)
|
35 |
-
|
36 |
-
# Convert back to PIL image
|
37 |
-
smoothed_mask = Image.fromarray(blurred_mask).convert("L")
|
38 |
-
|
39 |
-
# Optionally, apply an additional blur for extra smoothness using PIL
|
40 |
-
smoothed_mask = smoothed_mask.filter(ImageFilter.GaussianBlur(radius=blur_radius))
|
41 |
-
|
42 |
-
return smoothed_mask
|
43 |
-
|
44 |
-
|
45 |
-
@lru_cache(maxsize=1)
|
46 |
-
def get_model(model_id):
|
47 |
-
model = YOLO(model=model_id)
|
48 |
-
return model
|
49 |
-
|
50 |
-
|
51 |
-
def combine_masks(masks: List[dict], labels: List[str], is_label=True) -> Image.Image:
|
52 |
-
"""
|
53 |
-
Combine masks with the specified labels into a single mask, optimized for speed and non-overlapping of excluded masks.
|
54 |
-
|
55 |
-
Parameters:
|
56 |
-
- masks (List[dict]): A list of dictionaries, each containing the mask under a 'mask' key and its label under a 'label' key.
|
57 |
-
- labels (List[str]): A list of labels to include in the combination.
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
- Image.Image: The combined mask as a PIL Image object, or None if no masks are combined.
|
61 |
-
"""
|
62 |
-
labels_set = set(labels) # Convert labels list to a set for O(1) lookups
|
63 |
-
|
64 |
-
# Filter out any masks that do not have a label key
|
65 |
-
masks = [mask for mask in masks if "label" in mask]
|
66 |
-
|
67 |
-
# Filter and convert mask images based on the specified labels
|
68 |
-
mask_images = [
|
69 |
-
mask["mask"].convert("L")
|
70 |
-
for mask in masks
|
71 |
-
if (mask["label"] in labels_set) == is_label
|
72 |
-
]
|
73 |
-
|
74 |
-
# Ensure there is at least one mask to combine
|
75 |
-
if not mask_images:
|
76 |
-
return None # Or raise an appropriate error, e.g., ValueError("No masks found for the specified labels.")
|
77 |
-
|
78 |
-
# Initialize the combined mask with the first mask
|
79 |
-
combined_mask = mask_images[0]
|
80 |
-
|
81 |
-
# Combine the remaining masks with the existing combined_mask using a bitwise OR operation to ensure non-overlap
|
82 |
-
for mask in mask_images[1:]:
|
83 |
-
combined_mask = ImageChops.lighter(combined_mask, mask)
|
84 |
-
|
85 |
-
return combined_mask
|
86 |
-
|
87 |
-
|
88 |
-
body_labels = ["hair", "face", "arm", "hand", "leg", "foot", "outfit"]
|
89 |
-
|
90 |
-
|
91 |
-
class BodyMask:
|
92 |
-
def __init__(
|
93 |
-
self,
|
94 |
-
image_path,
|
95 |
-
model_id,
|
96 |
-
labels=body_labels,
|
97 |
-
overlay="mask",
|
98 |
-
widen_box=0,
|
99 |
-
elongate_box=0,
|
100 |
-
resize_to=640,
|
101 |
-
dilate_factor=0,
|
102 |
-
is_label=False,
|
103 |
-
resize_to_nearest_eight=False,
|
104 |
-
verbose=True,
|
105 |
-
remove_overlap=True,
|
106 |
-
):
|
107 |
-
self.image_path = image_path
|
108 |
-
self.image = self.get_image(
|
109 |
-
resize_to=resize_to, resize_to_nearest_eight=resize_to_nearest_eight
|
110 |
-
)
|
111 |
-
self.labels = labels
|
112 |
-
self.is_label = is_label
|
113 |
-
self.model_id = model_id
|
114 |
-
self.model = get_model(self.model_id)
|
115 |
-
self.model_labels = self.model.names
|
116 |
-
self.verbose = verbose
|
117 |
-
self.results = self.get_results()
|
118 |
-
self.dilate_factor = dilate_factor
|
119 |
-
self.body_mask = self.get_body_mask()
|
120 |
-
self.box = self.get_bounding_box()
|
121 |
-
self.body_box = self.get_body_box(
|
122 |
-
remove_overlap=remove_overlap, widen=widen_box, elongate=elongate_box
|
123 |
-
)
|
124 |
-
self.overlay = self.create_overlay(overlay)
|
125 |
-
|
126 |
-
def get_image(self, resize_to, resize_to_nearest_eight):
|
127 |
-
image = load_image(self.image_path)
|
128 |
-
if resize_to:
|
129 |
-
image = resize_preserve_aspect_ratio(image, resize_to)
|
130 |
-
if resize_to_nearest_eight:
|
131 |
-
image = resize_image_to_nearest_eight(image)
|
132 |
-
return image
|
133 |
-
|
134 |
-
def get_results(self):
|
135 |
-
imgsz = max(self.image.size)
|
136 |
-
results = self.model(
|
137 |
-
self.image, retina_masks=True, imgsz=imgsz, verbose=self.verbose
|
138 |
-
)[0]
|
139 |
-
masks, boxes, scores, phrases = unload(results, self.model_labels)
|
140 |
-
results = format_results(
|
141 |
-
masks, boxes, scores, phrases, self.model_labels, person_masks_only=False
|
142 |
-
)
|
143 |
-
masks_to_filter = ["hair"]
|
144 |
-
results = filter_highest_score(results, ["hair", "face", "phone"])
|
145 |
-
return results
|
146 |
-
|
147 |
-
def get_body_mask(self):
|
148 |
-
body_mask = combine_masks(self.results, self.labels, self.is_label)
|
149 |
-
if body_mask is not None:
|
150 |
-
return dilate_mask(body_mask, self.dilate_factor)
|
151 |
-
return None
|
152 |
-
|
153 |
-
def get_bounding_box(self):
|
154 |
-
if self.body_mask is None:
|
155 |
-
return None
|
156 |
-
return get_bounding_box(self.body_mask)
|
157 |
-
|
158 |
-
def get_body_box(self, remove_overlap=True, widen=0, elongate=0):
|
159 |
-
if self.body_mask is None or self.box is None:
|
160 |
-
return None
|
161 |
-
body_box = get_bounding_box_mask(self.body_mask, widen=widen, elongate=elongate)
|
162 |
-
if remove_overlap and body_box is not None:
|
163 |
-
body_box = self.remove_overlap(body_box)
|
164 |
-
return body_box
|
165 |
-
|
166 |
-
def create_overlay(self, overlay_type):
|
167 |
-
if self.body_box is not None and overlay_type == "box":
|
168 |
-
return overlay_mask(self.image, self.body_box, opacity=0.9, color="red")
|
169 |
-
elif self.body_mask is not None:
|
170 |
-
return overlay_mask(self.image, self.body_mask, opacity=0.9, color="red")
|
171 |
-
return self.image
|
172 |
-
|
173 |
-
def remove_overlap(self, body_box):
|
174 |
-
if body_box is None:
|
175 |
-
return None
|
176 |
-
box_array = np.array(body_box)
|
177 |
-
mask = self.combine_masks(mask_labels=self.labels, is_label=True)
|
178 |
-
if mask is None:
|
179 |
-
return body_box
|
180 |
-
mask_array = np.array(mask)
|
181 |
-
box_array[mask_array == 255] = 0
|
182 |
-
return Image.fromarray(box_array)
|
183 |
-
|
184 |
-
def combine_masks(self, mask_labels: List, no_labels=None, is_label=True):
|
185 |
-
if not is_label:
|
186 |
-
mask_labels = [
|
187 |
-
phrase for phrase in self.phrases if phrase not in mask_labels
|
188 |
-
]
|
189 |
-
masks = [
|
190 |
-
row.get("mask") for row in self.results if row.get("label") in mask_labels
|
191 |
-
]
|
192 |
-
if len(masks) == 0:
|
193 |
-
return None
|
194 |
-
combined_mask = masks[0]
|
195 |
-
for mask in masks[1:]:
|
196 |
-
combined_mask = ImageChops.lighter(combined_mask, mask)
|
197 |
-
return combined_mask
|
198 |
-
|
199 |
-
def display_results(self):
|
200 |
-
if not self.results:
|
201 |
-
print("No results to display.")
|
202 |
-
return
|
203 |
-
cols = min(len(self.results), 4)
|
204 |
-
display_image_with_masks(self.image, self.results, cols=cols)
|
205 |
-
|
206 |
-
def get_mask(self, mask_label):
|
207 |
-
if mask_label not in self.phrases:
|
208 |
-
print(f"Mask label '{mask_label}' not found in results.")
|
209 |
-
return None
|
210 |
-
return [f for f in self.results if f.get("label") == mask_label]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yolo/utils.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
import matplotlib.patches as patches
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image, ImageDraw
|
5 |
-
|
6 |
-
|
7 |
-
def unload_mask(mask):
|
8 |
-
mask = mask.cpu().numpy().squeeze()
|
9 |
-
mask = mask.astype(np.uint8) * 255
|
10 |
-
return Image.fromarray(mask)
|
11 |
-
|
12 |
-
|
13 |
-
def unload_box(box):
|
14 |
-
return box.cpu().numpy().tolist()
|
15 |
-
|
16 |
-
|
17 |
-
def masks_overlap(mask1, mask2):
|
18 |
-
return np.any(np.logical_and(mask1, mask2))
|
19 |
-
|
20 |
-
|
21 |
-
def remove_non_person_masks(person_mask, formatted_results):
|
22 |
-
return [
|
23 |
-
f
|
24 |
-
for f in formatted_results
|
25 |
-
if f.get("label") == "person" or masks_overlap(person_mask, f.get("mask"))
|
26 |
-
]
|
27 |
-
|
28 |
-
|
29 |
-
def format_masks(masks):
|
30 |
-
return [unload_mask(mask) for mask in masks]
|
31 |
-
|
32 |
-
|
33 |
-
def format_boxes(boxes):
|
34 |
-
return [unload_box(box) for box in boxes]
|
35 |
-
|
36 |
-
|
37 |
-
def format_scores(scores):
|
38 |
-
return scores.cpu().numpy().tolist()
|
39 |
-
|
40 |
-
|
41 |
-
def unload(result, labels_dict):
|
42 |
-
masks = format_masks(result.masks.data)
|
43 |
-
boxes = format_boxes(result.boxes.xyxy)
|
44 |
-
scores = format_scores(result.boxes.conf)
|
45 |
-
labels = result.boxes.cls
|
46 |
-
labels = [int(label.item()) for label in labels]
|
47 |
-
phrases = [labels_dict[label] for label in labels]
|
48 |
-
return masks, boxes, scores, phrases
|
49 |
-
|
50 |
-
|
51 |
-
def format_results(masks, boxes, scores, labels, labels_dict, person_masks_only=True):
|
52 |
-
if isinstance(list(labels_dict.keys())[0], int):
|
53 |
-
labels_dict = {v: k for k, v in labels_dict.items()}
|
54 |
-
|
55 |
-
# check that the person mask is present
|
56 |
-
if person_masks_only:
|
57 |
-
assert "person" in labels, "Person mask not present in results"
|
58 |
-
results_dict = []
|
59 |
-
for row in zip(labels, scores, boxes, masks):
|
60 |
-
label, score, box, mask = row
|
61 |
-
label_id = labels_dict[label]
|
62 |
-
results_row = dict(
|
63 |
-
label=label, score=score, mask=mask, box=box, label_id=label_id
|
64 |
-
)
|
65 |
-
results_dict.append(results_row)
|
66 |
-
results_dict = sorted(results_dict, key=lambda x: x["label"])
|
67 |
-
if person_masks_only:
|
68 |
-
# Get the person mask
|
69 |
-
person_mask = [f for f in results_dict if f.get("label") == "person"][0]["mask"]
|
70 |
-
assert person_mask is not None, "Person mask not found in results"
|
71 |
-
|
72 |
-
# Remove any results that do no overlap with the person
|
73 |
-
results_dict = remove_non_person_masks(person_mask, results_dict)
|
74 |
-
return results_dict
|
75 |
-
|
76 |
-
|
77 |
-
def filter_highest_score(results, labels):
|
78 |
-
"""
|
79 |
-
Filter results to remove entries with lower scores for specified labels.
|
80 |
-
|
81 |
-
Args:
|
82 |
-
results (list): List of dictionaries containing 'label', 'score', and other keys.
|
83 |
-
labels (list): List of labels to filter.
|
84 |
-
|
85 |
-
Returns:
|
86 |
-
list: Filtered results with only the highest score for each specified label.
|
87 |
-
"""
|
88 |
-
# Dictionary to keep track of the highest score entry for each label
|
89 |
-
label_highest = {}
|
90 |
-
|
91 |
-
# First pass: identify the highest score for each label
|
92 |
-
for result in results:
|
93 |
-
label = result["label"]
|
94 |
-
if label in labels:
|
95 |
-
if (
|
96 |
-
label not in label_highest
|
97 |
-
or result["score"] > label_highest[label]["score"]
|
98 |
-
):
|
99 |
-
label_highest[label] = result
|
100 |
-
|
101 |
-
# Second pass: construct the filtered list while preserving the order
|
102 |
-
filtered_results = []
|
103 |
-
seen_labels = set()
|
104 |
-
|
105 |
-
for result in results:
|
106 |
-
label = result["label"]
|
107 |
-
if label in labels:
|
108 |
-
if label in seen_labels:
|
109 |
-
continue
|
110 |
-
if result == label_highest[label]:
|
111 |
-
filtered_results.append(result)
|
112 |
-
seen_labels.add(label)
|
113 |
-
else:
|
114 |
-
filtered_results.append(result)
|
115 |
-
|
116 |
-
return filtered_results
|
117 |
-
|
118 |
-
|
119 |
-
def display_image_with_masks(image, results, cols=4, return_images=False):
|
120 |
-
# Convert PIL Image to numpy array
|
121 |
-
image_np = np.array(image)
|
122 |
-
|
123 |
-
# Check image dimensions
|
124 |
-
if image_np.ndim != 3 or image_np.shape[2] != 3:
|
125 |
-
raise ValueError("Image must be a 3-dimensional array with 3 color channels")
|
126 |
-
|
127 |
-
# Number of masks
|
128 |
-
n = len(results)
|
129 |
-
rows = (n + cols - 1) // cols # Calculate required number of rows
|
130 |
-
|
131 |
-
# Setting up the plot
|
132 |
-
fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 5 * rows))
|
133 |
-
axs = np.array(axs).reshape(-1) # Flatten axs array for easy indexing
|
134 |
-
for i, result in enumerate(results):
|
135 |
-
mask = result["mask"]
|
136 |
-
label = result["label"]
|
137 |
-
score = float(result["score"])
|
138 |
-
|
139 |
-
# Convert PIL mask to numpy array and resize if necessary
|
140 |
-
mask_np = np.array(mask)
|
141 |
-
if mask_np.shape != image_np.shape[:2]:
|
142 |
-
mask_np = resize(
|
143 |
-
mask_np, image_np.shape[:2], mode="constant", anti_aliasing=False
|
144 |
-
)
|
145 |
-
mask_np = (mask_np > 0.5).astype(
|
146 |
-
np.uint8
|
147 |
-
) # Threshold back to binary after resize
|
148 |
-
|
149 |
-
# Create an overlay where mask is True
|
150 |
-
overlay = np.zeros_like(image_np)
|
151 |
-
overlay[mask_np > 0] = [0, 0, 255] # Applying blue color on the mask area
|
152 |
-
|
153 |
-
# Combine the image and the overlay
|
154 |
-
combined = image_np.copy()
|
155 |
-
indices = np.where(mask_np > 0)
|
156 |
-
combined[indices] = combined[indices] * 0.5 + overlay[indices] * 0.5
|
157 |
-
|
158 |
-
# Show the combined image
|
159 |
-
ax = axs[i]
|
160 |
-
ax.imshow(combined)
|
161 |
-
ax.axis("off")
|
162 |
-
ax.set_title(f"Label: {label}, Score: {score:.2f}", fontsize=12)
|
163 |
-
rect = patches.Rectangle(
|
164 |
-
(0, 0),
|
165 |
-
image_np.shape[1],
|
166 |
-
image_np.shape[0],
|
167 |
-
linewidth=1,
|
168 |
-
edgecolor="r",
|
169 |
-
facecolor="none",
|
170 |
-
)
|
171 |
-
ax.add_patch(rect)
|
172 |
-
|
173 |
-
# Hide unused subplots if the total number of masks is not a multiple of cols
|
174 |
-
for idx in range(i + 1, rows * cols):
|
175 |
-
axs[idx].axis("off")
|
176 |
-
plt.tight_layout()
|
177 |
-
plt.show()
|
178 |
-
|
179 |
-
|
180 |
-
def get_bounding_box(mask):
|
181 |
-
if mask is None or not isinstance(mask, np.ndarray):
|
182 |
-
return None
|
183 |
-
|
184 |
-
# Check if the mask is empty
|
185 |
-
if mask.size == 0 or np.all(mask == 0):
|
186 |
-
return None
|
187 |
-
|
188 |
-
# Find the bounding box
|
189 |
-
rows = np.any(mask, axis=1)
|
190 |
-
cols = np.any(mask, axis=0)
|
191 |
-
if not np.any(rows) or not np.any(cols):
|
192 |
-
return None
|
193 |
-
|
194 |
-
rmin, rmax = np.where(rows)[0][[0, -1]]
|
195 |
-
cmin, cmax = np.where(cols)[0][[0, -1]]
|
196 |
-
|
197 |
-
return (int(cmin), int(rmin), int(cmax), int(rmax))
|
198 |
-
|
199 |
-
|
200 |
-
def get_bounding_box_mask(segmentation_mask, widen=0, elongate=0):
|
201 |
-
# Convert the PIL segmentation mask to a NumPy array
|
202 |
-
mask_array = np.array(segmentation_mask)
|
203 |
-
|
204 |
-
# Find the coordinates of the non-zero pixels
|
205 |
-
non_zero_y, non_zero_x = np.nonzero(mask_array)
|
206 |
-
|
207 |
-
# Calculate the bounding box coordinates
|
208 |
-
min_x, max_x = np.min(non_zero_x), np.max(non_zero_x)
|
209 |
-
min_y, max_y = np.min(non_zero_y), np.max(non_zero_y)
|
210 |
-
|
211 |
-
if widen > 0:
|
212 |
-
min_x = max(0, min_x - widen)
|
213 |
-
max_x = min(mask_array.shape[1], max_x + widen)
|
214 |
-
|
215 |
-
if elongate > 0:
|
216 |
-
min_y = max(0, min_y - elongate)
|
217 |
-
max_y = min(mask_array.shape[0], max_y + elongate)
|
218 |
-
|
219 |
-
# Create a new blank image for the bounding box mask
|
220 |
-
bounding_box_mask = Image.new("1", segmentation_mask.size)
|
221 |
-
|
222 |
-
# Draw the filled bounding box on the blank image
|
223 |
-
draw = ImageDraw.Draw(bounding_box_mask)
|
224 |
-
draw.rectangle([(min_x, min_y), (max_x, max_y)], fill=1)
|
225 |
-
|
226 |
-
return bounding_box_mask
|
227 |
-
|
228 |
-
|
229 |
-
colors = {
|
230 |
-
"blue": (136, 207, 249),
|
231 |
-
"red": (255, 0, 0),
|
232 |
-
"green": (0, 255, 0),
|
233 |
-
"yellow": (255, 255, 0),
|
234 |
-
"purple": (128, 0, 128),
|
235 |
-
"cyan": (0, 255, 255),
|
236 |
-
"magenta": (255, 0, 255),
|
237 |
-
"orange": (255, 165, 0),
|
238 |
-
"lime": (50, 205, 50),
|
239 |
-
"pink": (255, 192, 203),
|
240 |
-
"brown": (139, 69, 19),
|
241 |
-
"gray": (128, 128, 128),
|
242 |
-
"black": (0, 0, 0),
|
243 |
-
"white": (255, 255, 255),
|
244 |
-
"gold": (255, 215, 0),
|
245 |
-
"silver": (192, 192, 192),
|
246 |
-
"beige": (245, 245, 220),
|
247 |
-
"navy": (0, 0, 128),
|
248 |
-
"maroon": (128, 0, 0),
|
249 |
-
"olive": (128, 128, 0),
|
250 |
-
}
|
251 |
-
|
252 |
-
|
253 |
-
def overlay_mask(image, mask, opacity=0.5, color="blue"):
|
254 |
-
"""
|
255 |
-
Takes in a PIL image and a PIL boolean image mask. Overlay the mask on the image
|
256 |
-
and color the mask with a low opacity blue with hex #88CFF9.
|
257 |
-
"""
|
258 |
-
# Convert the boolean mask to an image with alpha channel
|
259 |
-
alpha = mask.convert("L").point(lambda x: 255 if x == 255 else 0, mode="1")
|
260 |
-
|
261 |
-
# Choose the color
|
262 |
-
r, g, b = colors[color]
|
263 |
-
|
264 |
-
color_mask = Image.new("RGBA", mask.size, (r, g, b, int(opacity * 255)))
|
265 |
-
mask_rgba = Image.composite(
|
266 |
-
color_mask, Image.new("RGBA", mask.size, (0, 0, 0, 0)), alpha
|
267 |
-
)
|
268 |
-
|
269 |
-
# Create a new RGBA image to overlay the mask on
|
270 |
-
overlay = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
271 |
-
|
272 |
-
# Paste the mask onto the overlay
|
273 |
-
overlay.paste(mask_rgba, (0, 0))
|
274 |
-
|
275 |
-
# Create a new image to return by blending the original image and the overlay
|
276 |
-
result = Image.alpha_composite(image.convert("RGBA"), overlay)
|
277 |
-
|
278 |
-
# Convert the result back to the original mode and return it
|
279 |
-
return result.convert(image.mode)
|
280 |
-
|
281 |
-
|
282 |
-
def resize_preserve_aspect_ratio(image, max_side=512):
|
283 |
-
width, height = image.size
|
284 |
-
scale = min(max_side / width, max_side / height)
|
285 |
-
new_width = int(width * scale)
|
286 |
-
new_height = int(height * scale)
|
287 |
-
return image.resize((new_width, new_height))
|
288 |
-
|
289 |
-
|
290 |
-
def round_to_nearest_eigth(value):
|
291 |
-
return int((value // 8 * 8))
|
292 |
-
|
293 |
-
|
294 |
-
def resize_image_to_nearest_eight(image):
|
295 |
-
width, height = image.size
|
296 |
-
width, height = round_to_nearest_eigth(width), round_to_nearest_eigth(height)
|
297 |
-
image = image.resize((width, height))
|
298 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|