flan-t5-custom-handler / app.py.backup
MjolnirThor's picture
Rename app.py to app.py.backup
a5a7bfd verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
import gradio as gr
app = FastAPI()
# Initialize model and tokenizer
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
class Query(BaseModel):
inputs: str
@app.post("/")
async def generate(query: Query):
try:
# Tokenize input
inputs = tokenizer(query.inputs, return_tensors="pt", max_length=512, truncation=True)
# Generate response
outputs = model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2,
early_stopping=True
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Gradio interface
def generate_text(prompt):
query = Query(inputs=prompt)
response = generate(query)
return response["generated_text"]
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
outputs="text",
title="Medical Assistant",
description="Ask me anything about medical topics!"
)
# Mount the Gradio app
app = gr.mount_gradio_app(app, iface, path="/")
if __name__ == "__main__":
import train # This will start the training process