|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
import torch |
|
import gradio as gr |
|
|
|
app = FastAPI() |
|
|
|
|
|
model_name = "google/flan-t5-large" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
class Query(BaseModel): |
|
inputs: str |
|
|
|
@app.post("/") |
|
async def generate(query: Query): |
|
try: |
|
# Tokenize input |
|
inputs = tokenizer(query.inputs, return_tensors="pt", max_length=512, truncation=True) |
|
|
|
# Generate response |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=512, |
|
num_beams=4, |
|
temperature=0.7, |
|
top_p=0.9, |
|
repetition_penalty=1.2, |
|
early_stopping=True |
|
) |
|
|
|
# Decode response |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": response} |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
def generate_text(prompt): |
|
query = Query(inputs=prompt) |
|
response = generate(query) |
|
return response["generated_text"] |
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), |
|
outputs="text", |
|
title="Medical Assistant", |
|
description="Ask me anything about medical topics!" |
|
) |
|
|
|
|
|
app = gr.mount_gradio_app(app, iface, path="/") |
|
|
|
if __name__ == "__main__": |
|
import train # This will start the training process |