Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#testing bloom1b training
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
6 |
+
from datasets import load_dataset
|
7 |
+
from huggingface_hub import HfApi, HfFolder
|
8 |
+
|
9 |
+
# Chargement du modèle et du tokenizer
|
10 |
+
model_name = "MisterAI/bigscience_bloom-560m"
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Fonction pour générer une réponse
|
15 |
+
def generate_response(input_text):
|
16 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
17 |
+
outputs = model.generate(**inputs, max_length=100)
|
18 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
return response
|
20 |
+
|
21 |
+
# Fonction pour le fine-tuning
|
22 |
+
def fine_tune_model(dataset_path, epochs, batch_size):
|
23 |
+
# Chargement du dataset
|
24 |
+
if dataset_path.startswith("huggingface://"):
|
25 |
+
dataset = load_dataset(dataset_path.replace("huggingface://", ""))
|
26 |
+
else:
|
27 |
+
dataset = load_dataset('text', data_files={'train': dataset_path})
|
28 |
+
|
29 |
+
# Préparation des données
|
30 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
31 |
+
|
32 |
+
# Configuration de l'entraînement
|
33 |
+
training_args = TrainingArguments(
|
34 |
+
output_dir="./results",
|
35 |
+
num_train_epochs=epochs,
|
36 |
+
per_device_train_batch_size=batch_size,
|
37 |
+
save_steps=10_000,
|
38 |
+
save_total_limit=2,
|
39 |
+
push_to_hub=True,
|
40 |
+
hub_model_id=model_name,
|
41 |
+
hub_strategy="checkpoint",
|
42 |
+
hub_token=HfFolder.get_token(),
|
43 |
+
)
|
44 |
+
|
45 |
+
trainer = Trainer(
|
46 |
+
model=model,
|
47 |
+
args=training_args,
|
48 |
+
data_collator=data_collator,
|
49 |
+
train_dataset=dataset['train'],
|
50 |
+
)
|
51 |
+
|
52 |
+
# Lancement de l'entraînement
|
53 |
+
trainer.train()
|
54 |
+
|
55 |
+
# Sauvegarde du modèle avec un préfixe
|
56 |
+
trainer.save_model(f"./FT01_{model_name.split('/')[-1]}")
|
57 |
+
tokenizer.save_pretrained(f"./FT01_{model_name.split('/')[-1]}")
|
58 |
+
|
59 |
+
# Push vers Hugging Face Hub
|
60 |
+
api = HfApi()
|
61 |
+
api.upload_folder(
|
62 |
+
folder_path=f"./FT01_{model_name.split('/')[-1]}",
|
63 |
+
repo_id=model_name,
|
64 |
+
repo_type="model"
|
65 |
+
)
|
66 |
+
|
67 |
+
return "Fine-tuning terminé et modèle sauvegardé."
|
68 |
+
|
69 |
+
# Interface Gradio
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
with gr.Tab("Chatbot"):
|
72 |
+
chat_interface = gr.Interface(
|
73 |
+
fn=generate_response,
|
74 |
+
inputs="text",
|
75 |
+
outputs="text",
|
76 |
+
title="Chat avec le modèle",
|
77 |
+
description="Entrez votre message pour obtenir une réponse du modèle"
|
78 |
+
)
|
79 |
+
|
80 |
+
with gr.Tab("Fine-Tuning"):
|
81 |
+
with gr.Row():
|
82 |
+
dataset_path = gr.Textbox(label="Chemin du dataset")
|
83 |
+
epochs = gr.Number(label="Nombre d'époques", value=1)
|
84 |
+
batch_size = gr.Number(label="Taille du batch", value=2)
|
85 |
+
fine_tune_button = gr.Button("Lancer le Fine-Tuning")
|
86 |
+
|
87 |
+
fine_tune_output = gr.Textbox(label="État du Fine-Tuning")
|
88 |
+
|
89 |
+
fine_tune_button.click(
|
90 |
+
fine_tune_model,
|
91 |
+
inputs=[dataset_path, epochs, batch_size],
|
92 |
+
outputs=fine_tune_output
|
93 |
+
)
|
94 |
+
|
95 |
+
# Lancement de la démo
|
96 |
+
if __name__ == "__main__":
|
97 |
+
demo.launch()
|