Docker_Ollama / app.py_01_OK
MisterAI's picture
Rename app.py to app.py_01_OK
a523a29 verified
#MisterAI/Docker_Ollama
#app.py_01
#https://huggingface.co/spaces/MisterAI/Docker_Ollama/
import logging
import requests
from pydantic import BaseModel
from langchain_community.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import gradio as gr
import threading
import subprocess
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Cache pour stocker les modèles déjà chargés
loaded_models = {}
# Variable pour suivre l'état du bouton "Stop"
stop_flag = False
def get_model_list():
url = "https://ollama.com/search"
response = requests.get(url)
# Vérifier si la requête a réussi
if response.status_code == 200:
# Extraire la liste des modèles depuis la page HTML
model_list = [model.strip() for model in response.text.split('<span x-test-search-response-title>')[1:]]
model_list = [model.split('</span>')[0] for model in model_list]
return model_list
else:
logger.error(f"Erreur lors de la récupération de la liste des modèles : {response.status_code} - {response.text}")
return []
def get_llm(model_name):
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
return Ollama(model=model_name, callback_manager=callback_manager)
class InputData(BaseModel):
model_name: str
input: str
max_tokens: int = 256
temperature: float = 0.7
def pull_model(model_name):
try:
# Exécuter la commande pour tirer le modèle
subprocess.run(["ollama", "pull", model_name], check=True)
logger.info(f"Model {model_name} pulled successfully.")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to pull model {model_name}: {e}")
raise
def check_and_load_model(model_name):
# Vérifier si le modèle est déjà chargé
if model_name in loaded_models:
logger.info(f"Model {model_name} is already loaded.")
return loaded_models[model_name]
else:
logger.info(f"Loading model {model_name}...")
# Tirer le modèle si nécessaire
pull_model(model_name)
llm = get_llm(model_name)
loaded_models[model_name] = llm
return llm
# Interface Gradio
def gradio_interface(model_name, input, max_tokens, temperature, stop_button=None):
global stop_flag
stop_flag = False
response = None # Initialisez la variable response ici
def worker():
nonlocal response # Utilisez nonlocal pour accéder à la variable response définie dans la fonction parente
llm = check_and_load_model(model_name)
response = llm(input, max_tokens=max_tokens, temperature=temperature)
thread = threading.Thread(target=worker)
thread.start()
thread.join()
if stop_flag:
return "Processing stopped by the user."
else:
return response # Maintenant, response est accessible ici
model_list = get_model_list()
#with gr.Blocks(theme=gr.themes.Glass()) as demo :
#with gr.Blocks() as demo :
# demo = gr.Interface(
demo = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(model_list, label="Select Model", value="mistral"),
gr.Textbox(label="Input"),
gr.Slider(minimum=1, maximum=2048, step=1, label="Max Tokens", value=256),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="Temperature", value=0.7),
gr.Button(value="Stop", variant="stop")
],
outputs=[
gr.Textbox(label="Output")
# gr.Button(value="Stop", variant="stop")
],
title="Ollama Demo"
)
def stop_processing():
global stop_flag
stop_flag = True
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)