Spaces:
Build error
Build error
File size: 10,984 Bytes
5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f d7b5656 d34cc3f abc7e19 d34cc3f abc7e19 5a42f41 5c02b64 d34cc3f 5c02b64 5a42f41 d34cc3f 5a42f41 d34cc3f abc7e19 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f 5a42f41 d34cc3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import gradio as gr
import torch
import torch.nn.functional as F
import requests
import numpy as np
import re
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import ViltProcessor, ViltForMaskedLM
from torchvision import transforms
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
class MinMaxResize:
def __init__(self, shorter=800, longer=1333):
self.min = shorter
self.max = longer
def __call__(self, x):
w, h = x.size
scale = self.min / min(w, h)
if h < w:
newh, neww = self.min, scale * w
else:
newh, neww = scale * h, self.min
if max(newh, neww) > self.max:
scale = self.max / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
newh, neww = newh // 32 * 32, neww // 32 * 32
return x.resize((neww, newh), resample=Image.Resampling.BICUBIC)
def pixelbert_transform(size=800):
longer = int((1333 / 800) * size)
return transforms.Compose(
[
MinMaxResize(shorter=size, longer=longer),
transforms.ToTensor(),
transforms.Compose([transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]),
]
)
def cost_matrix_cosine(x, y, eps=1e-5):
"""Compute cosine distnace across every pairs of x, y (batched)
[B, L_x, D] [B, L_y, D] -> [B, Lx, Ly]"""
assert x.dim() == y.dim()
assert x.size(0) == y.size(0)
assert x.size(2) == y.size(2)
x_norm = F.normalize(x, p=2, dim=-1, eps=eps)
y_norm = F.normalize(y, p=2, dim=-1, eps=eps)
cosine_sim = x_norm.matmul(y_norm.transpose(1, 2))
cosine_dist = 1 - cosine_sim
return cosine_dist
@torch.no_grad()
def ipot(C, x_len, x_pad, y_len, y_pad, joint_pad, beta, iteration, k):
""" [B, M, N], [B], [B, M], [B], [B, N], [B, M, N]"""
b, m, n = C.size()
sigma = torch.ones(b, m, dtype=C.dtype,
device=C.device) / x_len.unsqueeze(1)
T = torch.ones(b, n, m, dtype=C.dtype, device=C.device)
A = torch.exp(-C.transpose(1, 2) / beta)
# mask padded positions
sigma.masked_fill_(x_pad, 0)
joint_pad = joint_pad.transpose(1, 2)
T.masked_fill_(joint_pad, 0)
A.masked_fill_(joint_pad, 0)
# broadcastable lengths
x_len = x_len.unsqueeze(1).unsqueeze(2)
y_len = y_len.unsqueeze(1).unsqueeze(2)
# mask to zero out padding in delta and sigma
x_mask = (x_pad.to(C.dtype) * 1e4).unsqueeze(1)
y_mask = (y_pad.to(C.dtype) * 1e4).unsqueeze(1)
for _ in range(iteration):
Q = A * T # bs * n * m
sigma = sigma.view(b, m, 1)
for _ in range(k):
delta = 1 / (y_len * Q.matmul(sigma).view(b, 1, n) + y_mask)
sigma = 1 / (x_len * delta.matmul(Q) + x_mask)
T = delta.view(b, n, 1) * Q * sigma
T.masked_fill_(joint_pad, 0)
return T
def get_model_embedding_and_mask(model, input_ids, pixel_values):
input_shape = input_ids.size()
text_batch_size, seq_length = input_shape
device = input_ids.device
attention_mask = torch.ones(((text_batch_size, seq_length)), device=device)
image_batch_size = pixel_values.shape[0]
image_token_type_idx = 1
if image_batch_size != text_batch_size:
raise ValueError(
"The text inputs and image inputs need to have the same batch size")
pixel_mask = torch.ones((image_batch_size, model.vilt.config.image_size,
model.vilt.config.image_size), device=device)
text_embeds = model.vilt.embeddings.text_embeddings(
input_ids=input_ids, token_type_ids=None, inputs_embeds=None)
image_embeds, image_masks, patch_index = model.vilt.embeddings.visual_embed(
pixel_values=pixel_values, pixel_mask=pixel_mask, max_image_length=model.vilt.config.max_image_length
)
text_embeds = text_embeds + model.vilt.embeddings.token_type_embeddings(
torch.zeros_like(attention_mask, dtype=torch.long,
device=text_embeds.device)
)
image_embeds = image_embeds + model.vilt.embeddings.token_type_embeddings(
torch.full_like(image_masks, image_token_type_idx,
dtype=torch.long, device=text_embeds.device)
)
return text_embeds, image_embeds, attention_mask, image_masks, patch_index
def infer(url, mp_text, hidx):
try:
res = requests.get(url)
image = Image.open(io.BytesIO(res.content)).convert("RGB")
img = pixelbert_transform(size=500)(image)
img = img.unsqueeze(0).to(device)
except:
return False
tl = len(re.findall("\[MASK\]", mp_text))
inferred_token = [mp_text]
encoding = processor(image, mp_text, return_tensors="pt")
with torch.no_grad():
for i in range(tl):
encoded = processor.tokenizer(inferred_token)
input_ids = torch.tensor(encoded.input_ids)
encoded = encoded["input_ids"][0][1:-1]
outputs = model(input_ids=input_ids,
pixel_values=encoding.pixel_values)
mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
# only take into account text features (minus CLS and SEP token)
mlm_logits = mlm_logits[1: input_ids.shape[1] - 1, :]
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
# only take into account text
mlm_values[torch.tensor(encoded) != 103] = 0
select = mlm_values.argmax().item()
encoded[select] = mlm_ids[select].item()
inferred_token = [processor.decode(encoded)]
encoded = processor.tokenizer(inferred_token)
output = processor.decode(encoded.input_ids[0], skip_special_tokens=True)
selected_token = ''
result = Image.open('no_heatmap.jpg')
if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]):
input_ids = torch.tensor(encoded.input_ids)
outputs = model(
input_ids=input_ids, pixel_values=encoding.pixel_values, output_hidden_states=True)
txt_emb, img_emb, text_masks, image_masks, patch_index = get_model_embedding_and_mask(
model, input_ids=input_ids, pixel_values=encoding.pixel_values)
embedding_output = torch.cat([txt_emb, img_emb], dim=1)
attention_mask = torch.cat([text_masks, image_masks], dim=1)
extended_attention_mask = model.vilt.get_extended_attention_mask(
attention_mask, input_ids.size(), device=device)
encoder_outputs = model.vilt.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=None,
output_attentions=False,
output_hidden_states=True,
return_dict=True,
)
x = encoder_outputs.hidden_states[-1]
x = model.vilt.layernorm(x)
txt_emb, img_emb = (
x[:, :txt_emb.shape[1]],
x[:, txt_emb.shape[1]:],
)
txt_mask, img_mask = (
text_masks.bool(),
image_masks.bool(),
)
for i, _len in enumerate(txt_mask.sum(dim=1)):
txt_mask[i, _len - 1] = False
txt_mask[:, 0] = False
img_mask[:, 0] = False
txt_pad, img_pad = ~txt_mask, ~img_mask
cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
cost.masked_fill_(joint_pad, 0)
txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1,
keepdim=False)).to(dtype=cost.dtype)
img_len = (img_pad.size(1) - img_pad.sum(dim=1,
keepdim=False)).to(dtype=cost.dtype)
T = ipot(cost.detach(),
txt_len,
txt_pad,
img_len,
img_pad,
joint_pad,
0.1,
1000,
1,
)
plan = T[0]
plan_single = plan * len(txt_emb)
cost_ = plan_single.t()
cost_ = cost_[hidx][1:].cpu()
patch_index, (H, W) = patch_index
heatmap = torch.zeros(H, W)
for i, pidx in enumerate(patch_index[0]):
h, w = pidx[0].item(), pidx[1].item()
heatmap[h, w] = cost_[i]
heatmap = (heatmap - heatmap.mean()) / heatmap.std()
heatmap = np.clip(heatmap, 1.0, 3.0)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
_w, _h = image.size
overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize(
(_w, _h), resample=Image.Resampling.NEAREST
)
image_rgba = image.copy()
image_rgba.putalpha(overlay)
result = image_rgba
selected_token = processor.tokenizer.convert_ids_to_tokens(
encoded["input_ids"][0][hidx]
)
return [np.array(image), output, selected_token, result]
title = "What's in the picture ?"
description = """
Can't find your words to describe an image ? The pre-trained
ViLT model will help you. Give the url of an image and a caption with [MASK] tokens to be filled or play with the given examples !
You can even see where the model focused its attention for a given word : just choose the index of the selected word with the slider.
"""
inputs_interface = [
gr.inputs.Textbox(
label="Url of an image.",
lines=5,
),
gr.inputs.Textbox(
label="Caption with [MASK] tokens to be filled.", lines=5),
gr.inputs.Slider(
minimum=0,
maximum=38,
step=1,
label="Index of token for heatmap visualization (ignored if zero)",
),
]
outputs_interface = [
gr.outputs.Image(label="Image"),
gr.outputs.Textbox(label="description"),
gr.outputs.Textbox(label="selected token"),
gr.outputs.Image(label="Heatmap")
]
interface = gr.Interface(
fn=infer,
inputs=inputs_interface,
outputs=outputs_interface,
title=title,
description=description,
server_name="0.0.0.0",
server_port=8888,
examples=[
[
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
"a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].",
0,
],
[
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT5W71UTcSBm3r5l9NzBemglq983bYvKOHRkw&usqp=CAU",
"An [MASK] with the [MASK] in the [MASK].",
5,
],
[
"https://www.referenseo.com/wp-content/uploads/2019/03/image-attractive-960x540.jpg",
"An [MASK] is flying with a [MASK] over a [MASK].",
2,
],
],
)
interface.launch()
|