utrecht-pollution-prediction / src /past_data_api_calls copy.py
elisaklunder's picture
data pipelines
1d3c9ee
raw
history blame
6.76 kB
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO
import pandas as pd
def pollution_data():
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
last_year_date = date.today() - timedelta(days=365)
start_date = last_year_date - timedelta(days=7)
end_date = last_year_date + timedelta(days=3)
date_list = [
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
]
for current_date in date_list:
today = current_date.isoformat() + "T09:00:00Z"
yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
for particle in particles:
all_dataframes = [] # Reset for each particle
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ""
headers = {}
conn.request(
"GET",
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
payload,
headers,
)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like="value")
all_dataframes.append(df)
if all_dataframes:
combined_data = pd.concat(all_dataframes, ignore_index=True)
combined_data.to_csv(f"{particle}_{today}.csv", index=False)
def delete_csv(csvs):
for csv_file in csvs:
if os.path.exists(csv_file) and os.path.isfile(csv_file):
os.remove(csv_file)
def clean_values():
particles = ["NO2", "O3"]
csvs = []
NO2 = []
O3 = []
last_year_date = date.today() - timedelta(days=365)
start_date = last_year_date - timedelta(days=7)
end_date = last_year_date + timedelta(days=3)
date_list = [
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
]
for current_date in date_list:
today = current_date.isoformat() + "T09:00:00Z"
for particle in particles:
name = f"{particle}_{today}.csv"
csvs.append(name)
for csv_file in csvs:
if not os.path.exists(csv_file):
continue # Skip if the file doesn't exist
values = [] # Reset values for each CSV file
# Open the CSV file and read the values
with open(csv_file, "r") as file:
reader = csv.reader(file)
for row in reader:
for value in row:
# Use regular expressions to extract numeric part
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
if cleaned_value: # If we successfully extract a number
values.append(
float(cleaned_value[0])
) # Convert the first match to float
# Compute the average if the values list is not empty
if values:
avg = sum(values) / len(values)
if "NO2" in csv_file:
NO2.append(avg)
else:
O3.append(avg)
delete_csv(csvs)
return NO2, O3
def add_columns():
file_path = "weather_data.csv"
df = pd.read_csv(file_path)
df.insert(1, "NO2", None)
df.insert(2, "O3", None)
df.insert(10, "weekday", None)
return df
def scale(data):
df = data
columns = list(df.columns)
columns.insert(3, columns.pop(6))
df = df[columns]
columns.insert(5, columns.pop(9))
df = df[columns]
columns.insert(9, columns.pop(6))
df = df[columns]
df = df.rename(
columns={
"datetime": "date",
"windspeed": "wind_speed",
"temp": "mean_temp",
"solarradiation": "global_radiation",
"precip": "percipitation",
"sealevelpressure": "pressure",
"visibility": "minimum_visibility",
}
)
df["date"] = pd.to_datetime(df["date"])
df["weekday"] = df["date"].dt.day_name()
df = df.sort_values(by="date").reset_index(drop=True)
df["wind_speed"] = (df["wind_speed"] / 3.6) * 10
df["mean_temp"] = df["mean_temp"] * 10
df["minimum_visibility"] = df["minimum_visibility"] * 10
df["percipitation"] = df["percipitation"] * 10
df["pressure"] = df["pressure"]
df["wind_speed"] = df["wind_speed"].astype(int)
df["mean_temp"] = df["mean_temp"].astype(int)
df["minimum_visibility"] = df["minimum_visibility"].astype(int)
df["percipitation"] = df["percipitation"].astype(int)
df["pressure"] = df["pressure"].astype(int)
df["humidity"] = df["humidity"].astype(int)
df["global_radiation"] = df["global_radiation"].astype(int)
return df
def insert_pollution(NO2, O3, data):
df = data
df["NO2"] = NO2
df["O3"] = O3
return df
def weather_data():
last_year_date = date.today() - timedelta(days=365)
start_date = (last_year_date - timedelta(days=7)).isoformat()
end_date = (last_year_date + timedelta(days=3)).isoformat()
try:
ResultBytes = urllib.request.urlopen(
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
)
# Parse the results as CSV
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
# Saving the CSV content to a file
current_dir = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(current_dir, "past_weather_data.csv")
with open(file_path, "w", newline="", encoding="utf-8") as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerows(CSVText)
except urllib.error.HTTPError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
def get_past_data():
weather_data()
pollution_data()
NO2, O3 = clean_values()
df = add_columns()
scaled_df = scale(df)
output_df = insert_pollution(NO2, O3, scaled_df)
os.remove("past_weather_data.csv")
return output_df