File size: 7,062 Bytes
ef6a061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import faiss
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel, pipeline
import json
import gradio as gr
import matplotlib.pyplot as plt
import tempfile
import os
class MedicalRAG:
def __init__(self, embed_path, pmids_path, content_path):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load data
self.embeddings = np.load(embed_path)
self.index = self._create_faiss_index(self.embeddings)
self.pmids, self.content = self._load_json_files(pmids_path, content_path)
# Setup models
self.encoder, self.tokenizer = self._setup_encoder()
self.generator = self._setup_generator()
def _create_faiss_index(self, embeddings):
index = faiss.IndexFlatIP(768) # 768 is embedding dimension
index.add(embeddings)
return index
def _load_json_files(self, pmids_path, content_path):
with open(pmids_path) as f:
pmids = json.load(f)
with open(content_path) as f:
content = json.load(f)
return pmids, content
def _setup_encoder(self):
model = AutoModel.from_pretrained("ncbi/MedCPT-Query-Encoder").to(self.device)
tokenizer = AutoTokenizer.from_pretrained("ncbi/MedCPT-Query-Encoder")
return model, tokenizer
def _setup_generator(self):
return pipeline(
"text-generation",
model="HuggingFaceTB/SmolLM2-1.7B-Instruct",
device=self.device,
torch_dtype=torch.float16 if self.device.type == 'cuda' else torch.float32
)
def encode_query(self, query):
with torch.no_grad():
inputs = self.tokenizer([query], truncation=True, padding=True,
return_tensors='pt', max_length=64).to(self.device)
embeddings = self.encoder(**inputs).last_hidden_state[:, 0, :]
return embeddings.cpu().numpy()
def search_documents(self, query_embedding, k=8):
scores, indices = self.index.search(query_embedding, k=k)
return [(self.pmids[idx], float(score)) for idx, score in zip(indices[0], scores[0])], indices[0]
def get_document_content(self, pmid):
doc = self.content.get(pmid, {})
return {
'title': doc.get('t', '').strip(),
'date': doc.get('d', '').strip(),
'abstract': doc.get('a', '').strip()
}
def visualize_embeddings(self, query_embed, relevant_indices, labels):
plt.figure(figsize=(20, len(relevant_indices) + 1))
# Prepare embeddings for visualization
embeddings = np.vstack([query_embed[0], self.embeddings[relevant_indices]])
normalized_embeddings = embeddings / np.max(np.abs(embeddings))
# plt
for idx, (embedding, label) in enumerate(zip(normalized_embeddings, labels)):
y_pos = len(labels) - 1 - idx
plt.imshow(embedding.reshape(1, -1), aspect='auto', extent=[0, 768, y_pos, y_pos+0.8],
cmap='inferno')
# Add labels and styling
plt.yticks(range(len(labels)), labels)
plt.xlabel('Embedding Dimensions')
plt.colorbar(label='Normalized Value')
plt.title('Query and Retrieved Document Embeddings')
# Save plot
temp_path = os.path.join(tempfile.gettempdir(), f'embeddings_{hash(str(embeddings))}.png')
plt.savefig(temp_path, bbox_inches='tight', dpi=150)
plt.close()
return temp_path
def generate_answer(self, query, contexts):
prompt = (
"<|im_start|>system\n"
"You are a helpful medical assistant. Answer questions based on the provided literature."
"<|im_end|>\n<|im_start|>user\n"
f"Based on these medical articles, answer this question:\n\n"
f"Question: {query}\n\n"
f"Relevant Literature:\n{contexts}\n"
"<|im_end|>\n<|im_start|>assistant"
)
response = self.generator(
prompt,
max_new_tokens=200,
temperature=0.3,
top_p=0.95,
do_sample=True
)
return response[0]['generated_text'].split("<|im_start|>assistant")[-1].strip()
def process_query(self, query):
try:
# Encode and search
query_embed = self.encode_query(query)
doc_matches, indices = self.search_documents(query_embed)
# Prepare documents and labels
documents = []
sources = []
labels = ["Query"]
for pmid, score in doc_matches:
doc = self.get_document_content(pmid)
if doc['abstract']:
documents.append(f"Title: {doc['title']}\nAbstract: {doc['abstract']}")
sources.append(f"PMID: {pmid}, Score: {score:.3f}, Link: https://pubmed.ncbi.nlm.nih.gov/{pmid}/")
labels.append(f"Doc {len(labels)}: {doc['title'][:30]}...")
# Generate outputs
visualization = self.visualize_embeddings(query_embed, indices, labels)
answer = self.generate_answer(query, "\n\n".join(documents[:3]))
sources_text = "\n".join(sources)
context = "\n\n".join(documents)
return answer, sources_text, context, visualization
except Exception as e:
print(f"Error: {str(e)}")
return str(e), "Error retrieving sources", "", None
def create_interface():
rag = MedicalRAG(
embed_path="embeds_chunk_36.npy",
pmids_path="pmids_chunk_36.json",
content_path="pubmed_chunk_36.json"
)
with gr.Blocks(title="Medical Literature QA") as interface:
gr.Markdown("# Medical Literature Question Answering")
with gr.Row():
with gr.Column():
query = gr.Textbox(lines=2, placeholder="Enter your medical question...", label="Question")
submit = gr.Button("Submit", variant="primary")
sources = gr.Textbox(label="Sources", lines=3)
plot = gr.Image(label="Embedding Visualization")
with gr.Column():
answer = gr.Textbox(label="Answer", lines=5)
context = gr.Textbox(label="Context", lines=6)
with gr.Row():
gr.Examples(
examples=[
["What are the latest treatments for diabetes?"],
["How effective are COVID-19 vaccines?"],
["What are common symptoms of the flu?"],
["How can I maintain good heart health?"]
],
inputs=query
)
submit.click(
fn=rag.process_query,
inputs=query,
outputs=[answer, sources, context, plot]
)
return interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True) |