Spaces:
Sleeping
Sleeping
Merwan6
commited on
Commit
·
eaf4ff4
1
Parent(s):
18af9e8
push metrics
Browse files- scripts/metric.py +86 -0
scripts/metric.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from tqdm import tqdm # ✅ Ajout ici
|
5 |
+
from datasets import load_dataset
|
6 |
+
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, log_loss
|
7 |
+
from inference import (
|
8 |
+
zero_shot_inference,
|
9 |
+
few_shot_inference,
|
10 |
+
base_model_inference,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Dictionnaire des fonctions à évaluer
|
14 |
+
models_to_evaluate = {
|
15 |
+
"Base model": base_model_inference,
|
16 |
+
"Zero-shot": zero_shot_inference,
|
17 |
+
"Few-shot": few_shot_inference,
|
18 |
+
}
|
19 |
+
|
20 |
+
label_map = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
|
21 |
+
|
22 |
+
# Charger un sous-ensemble du jeu de test AG News
|
23 |
+
dataset = load_dataset("ag_news", split="test[:10%]")
|
24 |
+
|
25 |
+
def evaluate_model(name, inference_func):
|
26 |
+
print(f"\n🔍 Évaluation du modèle : {name}")
|
27 |
+
true_labels = []
|
28 |
+
pred_labels = []
|
29 |
+
all_probs = []
|
30 |
+
|
31 |
+
start = time.time()
|
32 |
+
|
33 |
+
for example in tqdm(dataset, desc=f"Modèle : {name}"):
|
34 |
+
text = example["text"]
|
35 |
+
true_label = example["label"]
|
36 |
+
true_class = label_map[true_label]
|
37 |
+
|
38 |
+
try:
|
39 |
+
pred_class, scores = inference_func(text)
|
40 |
+
except Exception as e:
|
41 |
+
print(f"⚠️ Erreur sur un exemple : {e}")
|
42 |
+
continue
|
43 |
+
|
44 |
+
# Scores pour les 4 classes dans le même ordre
|
45 |
+
prob_dist = [scores.get(c, 0.0) for c in label_map.values()]
|
46 |
+
pred_index = list(label_map.values()).index(pred_class)
|
47 |
+
|
48 |
+
pred_labels.append(pred_index)
|
49 |
+
true_labels.append(true_label)
|
50 |
+
all_probs.append(prob_dist)
|
51 |
+
|
52 |
+
end = time.time()
|
53 |
+
runtime = round(end - start, 2)
|
54 |
+
|
55 |
+
acc = accuracy_score(true_labels, pred_labels)
|
56 |
+
f1 = f1_score(true_labels, pred_labels, average='weighted')
|
57 |
+
prec = precision_score(true_labels, pred_labels, average='weighted')
|
58 |
+
rec = recall_score(true_labels, pred_labels, average='weighted')
|
59 |
+
loss = log_loss(true_labels, all_probs)
|
60 |
+
|
61 |
+
print(f"✅ Résultats {name} :")
|
62 |
+
print(f"- Accuracy : {acc:.4f}")
|
63 |
+
print(f"- F1 Score : {f1:.4f}")
|
64 |
+
print(f"- Precision : {prec:.4f}")
|
65 |
+
print(f"- Recall : {rec:.4f}")
|
66 |
+
print(f"- Log Loss : {loss:.4f}")
|
67 |
+
print(f"- Runtime : {runtime:.2f} sec\n")
|
68 |
+
|
69 |
+
return {
|
70 |
+
"model": name,
|
71 |
+
"accuracy": acc,
|
72 |
+
"f1_score": f1,
|
73 |
+
"precision": prec,
|
74 |
+
"recall": rec,
|
75 |
+
"loss": loss,
|
76 |
+
"runtime": runtime
|
77 |
+
}
|
78 |
+
|
79 |
+
# Évaluer tous les modèles
|
80 |
+
results = []
|
81 |
+
for name, func in models_to_evaluate.items():
|
82 |
+
results.append(evaluate_model(name, func))
|
83 |
+
|
84 |
+
# Affichage résumé
|
85 |
+
df = pd.DataFrame(results)
|
86 |
+
print(df)
|