|
|
import gradio as gr |
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
import torch |
|
|
import librosa |
|
|
import subprocess |
|
|
from langdetect import detect |
|
|
|
|
|
|
|
|
MODELS = { |
|
|
"es": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", |
|
|
"en": "facebook/wav2vec2-large-960h", |
|
|
|
|
|
} |
|
|
|
|
|
def convert_audio_to_wav(audio_path): |
|
|
wav_path = "converted_audio.wav" |
|
|
command = ["ffmpeg", "-i", audio_path, "-ac", "1", "-ar", "16000", wav_path] |
|
|
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) |
|
|
return wav_path |
|
|
|
|
|
def detect_language(audio_path): |
|
|
|
|
|
speech, _ = librosa.load(audio_path, sr=16000, duration=15) |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") |
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") |
|
|
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values |
|
|
with torch.no_grad(): |
|
|
logits = model(input_values).logits |
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
|
return detect(transcription) |
|
|
|
|
|
def transcribe_audio(audio): |
|
|
|
|
|
wav_audio = convert_audio_to_wav(audio) |
|
|
|
|
|
|
|
|
language = detect_language(wav_audio) |
|
|
model_name = MODELS.get(language, "facebook/wav2vec2-large-960h") |
|
|
|
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
speech, rate = librosa.load(wav_audio, sr=16000) |
|
|
|
|
|
|
|
|
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values |
|
|
|
|
|
with torch.no_grad(): |
|
|
logits = model(input_values).logits |
|
|
|
|
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
|
|
|
|
|
|
|
with open("transcription.txt", "w") as file: |
|
|
file.write(transcription) |
|
|
|
|
|
return "transcription.txt" |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=transcribe_audio, |
|
|
inputs=gr.Audio(type="filepath"), |
|
|
outputs=gr.File(), |
|
|
title="Transcriptor de Audio Multilingüe", |
|
|
description="Sube un archivo de audio y obtén la transcripción en un archivo de texto." |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.launch() |
|
|
|