Pain_detection2 / app.py
MerlenMaven's picture
Update app.py
e62661f verified
raw
history blame
10.9 kB
import os
import gradio as gr
import cv2
import librosa
import librosa.display
import torch
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
from fer.classes import FER
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
from flask import Flask, request, jsonify
from flask_cors import CORS
from groq import Groq
import requests
from threading import Thread
import concurrent.futures
# Set the environment variables before importing libraries
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # Allow duplicate OpenMP libraries
os.environ['OMP_NUM_THREADS'] = '1' # Limit the number of OpenMP threads to 1
# Flask app for Groq Chatbot
app = Flask(__name__)
CORS(app)
# Groq API Setup
client = Groq(api_key="")
# Configuration des modèles
weight_model1 = 0.7 # Pondération pour le modèle FER
weight_model2 = 0.3 # Pondération pour le modèle audio
pain_threshold = 0.4 # Seuil pour détecter la douleur
confidence_threshold = 0.3 # Seuil de confiance pour les émotions
pain_emotions = ["angry", "fear", "sad"] # Émotions liées à la douleur
# Fonction pour détecter si l'entrée est un audio ou une vidéo
def detect_input_type(file_path):
_, ext = os.path.splitext(file_path)
if ext.lower() in ['.mp3', '.wav', '.flac']:
return 'audio'
elif ext.lower() in ['.mp4', '.avi', '.mov', '.mkv']:
return 'video'
else:
return 'unknown'
# ---- Modèle FER (Vision) ----
def extract_frames_and_analyze(video_path, fer_detector, sampling_rate=1):
cap = cv2.VideoCapture(video_path)
pain_scores = []
frame_indices = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Ne traiter qu'une frame sur n pour optimiser la performance
if frame_count % sampling_rate == 0:
# Détecter l'émotion dominante
emotion, score = fer_detector.top_emotion(frame)
if emotion in pain_emotions and score >= confidence_threshold:
pain_scores.append(score)
frame_indices.append(frame_count)
frame_count += 1
cap.release()
# Si des scores sont détectés, appliquer le smoothing
if pain_scores:
window_length = min(5, len(pain_scores))
if window_length % 2 == 0:
window_length = max(3, window_length - 1)
# Ensure window_length is less than or equal to the length of pain_scores
window_length = min(window_length, len(pain_scores))
# Ensure polyorder is less than window_length
polyorder = min(2, window_length - 1)
pain_scores = savgol_filter(pain_scores, window_length, polyorder=polyorder)
return pain_scores, frame_indices
# ---- Modèle Audio ----
def analyze_audio(audio_path, model, feature_extractor):
try:
audio, sr = librosa.load(audio_path, sr=16000)
inputs = feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1)
pain_scores = []
for idx, prob in enumerate(probs[0]):
emotion = model.config.id2label[idx]
if emotion in pain_emotions:
pain_scores.append(prob.item())
return pain_scores
except Exception as e:
print(f"Erreur lors de l'analyse audio : {e}")
return []
# ---- Fusion des scores ----
def combine_scores(scores_model1, scores_model2, weight1, weight2):
"""Combine scores from FER and audio models using weights."""
# If any list is empty, fill it with 0 values to match the other model's length
if len(scores_model1) == 0:
scores_model1 = [0] * len(scores_model2)
if len(scores_model2) == 0:
scores_model2 = [0] * len(scores_model1)
# Combine the scores using weights
combined_scores = [
(weight1 * score1 + weight2 * score2)
for score1, score2 in zip(scores_model1, scores_model2)
]
return combined_scores
# ---- Traitement de l'entrée audio ou vidéo ----
def process_input(file_path, fer_detector, model, feature_extractor):
input_type = detect_input_type(file_path)
if input_type == 'audio':
pain_scores_model1 = []
pain_scores_model2 = analyze_audio(file_path, model, feature_extractor)
final_scores = pain_scores_model2 # Pas de normalisation nécessaire ici
elif input_type == 'video':
# Traitement en parallèle des vidéos et de l'audio
with concurrent.futures.ThreadPoolExecutor() as executor:
future_video = executor.submit(extract_frames_and_analyze, file_path, fer_detector, sampling_rate=5)
future_audio = executor.submit(analyze_audio, file_path, model, feature_extractor)
pain_scores_model1, frame_indices = future_video.result()
pain_scores_model2 = future_audio.result()
final_scores = combine_scores(pain_scores_model1, pain_scores_model2, weight_model1, weight_model2)
else:
return "Type de fichier non pris en charge. Veuillez fournir un fichier audio ou vidéo."
# Décision finale
average_pain = sum(final_scores) / len(final_scores) if final_scores else 0
pain_detected = average_pain > pain_threshold
result = "Pain" if pain_detected else "No Pain"
# Affichage des résultats
if not final_scores:
plt.text(0.5, 0.5, "No Data Available", ha='center', va='center', fontsize=16)
else:
plt.plot(range(len(final_scores)), final_scores, label="Combined Pain Scores", color="purple")
plt.axhline(y=pain_threshold, color="green", linestyle="--", label="Pain Threshold")
plt.xlabel("Frame / Sample Index")
plt.ylabel("Pain Score")
plt.title("Pain Detection Scores")
plt.legend()
plt.grid(True)
# Save the graph as a file
graph_filename = "pain_detection_graph.png"
plt.savefig(graph_filename)
plt.close()
return result, average_pain, graph_filename
@app.route('/message', methods=['POST'])
def handle_message():
user_input = request.json.get('message', '')
completion = client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "user", "content": user_input}],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
response = ""
for chunk in completion:
response += chunk.choices[0].delta.content or ""
return jsonify({'reply': response})
# Chatbot interaction function
def gradio_interface(file, chatbot_input, state_pain_results):
model_name = "superb/wav2vec2-large-superb-er"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
detector = FER(mtcnn=True)
chatbot_response = "How can I assist you today?" # Default chatbot response
pain_result = ""
average_pain = ""
graph_filename = ""
# Handle file upload and process it when Submit is clicked
if file:
result, average_pain, graph_filename = process_input(file.name, detector, model, feature_extractor)
state_pain_results["result"] = result
state_pain_results["average_pain"] = average_pain
state_pain_results["graph_filename"] = graph_filename
# Custom chatbot response based on pain detection
if result == "No Pain":
chatbot_response = "It seems there's no pain detected. How can I assist you further?"
else:
chatbot_response = "It seems you have some pain. Would you like me to help with it or provide more details?"
# Update pain result and graph filename
pain_result = result
else:
# Use the existing state if no new file is uploaded
pain_result = state_pain_results.get("result", "")
average_pain = state_pain_results.get("average_pain", "")
graph_filename = state_pain_results.get("graph_filename", "")
# If the chatbot_input field is not empty, process the chat message
if chatbot_input:
# Send message to Flask server to get the response from Groq model
response = requests.post(
'http://localhost:5000/message', json={'message': chatbot_input}
)
data = response.json()
chatbot_response = data['reply']
# Ensure 4 outputs: pain_result, average_pain, graph_output, chatbot_output
return pain_result, average_pain, graph_filename, chatbot_response
# Start Flask server in a thread
def start_flask():
app.run(debug=True, use_reloader=False)
# Launch Gradio and Flask
if __name__ == "__main__":
# Start Flask in a separate thread
flask_thread = Thread(target=start_flask)
flask_thread.start()
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("<h1 style='text-align:center;'>PainSense: AI-Driven Pain Detection and Chatbot Assistance</h1>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Audio or Video File")
with gr.Row(): # Place buttons next to each other
clear_button = gr.Button("Clear", elem_id="clear_btn")
submit_button = gr.Button("Submit", variant="primary", elem_id="submit_button")
chatbot_input = gr.Textbox(label="Chat with AI", placeholder="Ask a question...", interactive=True)
chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False)
with gr.Column(scale=1):
pain_result = gr.Textbox(label="Pain Detection Result")
average_pain = gr.Textbox(label="Average Pain")
graph_output = gr.Image(label="Pain Detection Graph")
state = gr.State({"result": "", "average_pain": "", "graph_filename": ""})
# Clear button resets the UI, including the file input, chatbot input, and outputs
clear_button.click(lambda: (None, None, "", ""), outputs=[pain_result, average_pain, graph_output, chatbot_output, file_input])
# File input only triggers processing when the submit button is clicked
submit_button.click(
gradio_interface,
inputs=[file_input, chatbot_input, state],
outputs=[pain_result, average_pain, graph_output, chatbot_output],
)
# Chat input triggers chatbot response when 'Enter' is pressed
chatbot_input.submit(
lambda file, chatbot_input, state: gradio_interface(file, chatbot_input, state)[-1], # Only update chatbot_output
inputs=[file_input, chatbot_input, state],
outputs=[chatbot_output] # Only update chatbot output
)
interface.launch(debug=True)