Spaces:
Sleeping
Sleeping
File size: 11,560 Bytes
c623f78 589108f 5eb80a4 c623f78 24d04ee c623f78 30cd067 5eb80a4 589108f 9961512 589108f 6481a82 589108f 8b686f4 589108f 9961512 589108f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import zipfile
import os
import sys
# Path to your ZIP file and extraction directory
zip_path = "fer.zip" # Ensure the correct path to your ZIP file
extract_folder = "fer" # Directory where files will be extracted
# Check if the extraction folder exists, if not, extract the ZIP file
if not os.path.exists(extract_folder):
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_folder) # Extract to 'fer' directory
# Add the extracted folder to sys.path so we can import the FER module from there
sys.path.insert(0, os.path.abspath(extract_folder)) # Insert at the beginning
import gradio as gr
import cv2
import librosa
import librosa.display
import torch
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
from flask import Flask, request, jsonify
from flask_cors import CORS
from groq import Groq
import requests
from threading import Thread
import concurrent.futures
from fer import FER
# Set the environment variables before importing libraries
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # Allow duplicate OpenMP libraries
os.environ['OMP_NUM_THREADS'] = '1' # Limit the number of OpenMP threads to 1
# Flask app for Groq Chatbot
app = Flask(__name__)
CORS(app)
# Groq API Setup
client = Groq(api_key="your_api_key")
# Configuration des modèles
weight_model1 = 0.7 # Pondération pour le modèle FER
weight_model2 = 0.3 # Pondération pour le modèle audio
pain_threshold = 0.4 # Seuil pour détecter la douleur
confidence_threshold = 0.3 # Seuil de confiance pour les émotions
pain_emotions = ["angry", "fear", "sad"] # Émotions liées à la douleur
# Fonction pour détecter si l'entrée est un audio ou une vidéo
def detect_input_type(file_path):
_, ext = os.path.splitext(file_path)
if ext.lower() in ['.mp3', '.wav', '.flac']:
return 'audio'
elif ext.lower() in ['.mp4', '.avi', '.mov', '.mkv']:
return 'video'
else:
return 'unknown'
# ---- Modèle FER (Vision) ----
def extract_frames_and_analyze(video_path, fer_detector, sampling_rate=1):
cap = cv2.VideoCapture(video_path)
pain_scores = []
frame_indices = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Ne traiter qu'une frame sur n pour optimiser la performance
if frame_count % sampling_rate == 0:
# Détecter l'émotion dominante
emotion, score = fer_detector.top_emotion(frame)
if emotion in pain_emotions and score >= confidence_threshold:
pain_scores.append(score)
frame_indices.append(frame_count)
frame_count += 1
cap.release()
# Si des scores sont détectés, appliquer le smoothing
if pain_scores:
window_length = min(5, len(pain_scores))
if window_length % 2 == 0:
window_length = max(3, window_length - 1)
# Ensure window_length is less than or equal to the length of pain_scores
window_length = min(window_length, len(pain_scores))
# Ensure polyorder is less than window_length
polyorder = min(2, window_length - 1)
pain_scores = savgol_filter(pain_scores, window_length, polyorder=polyorder)
return pain_scores, frame_indices
# ---- Modèle Audio ----
def analyze_audio(audio_path, model, feature_extractor):
try:
audio, sr = librosa.load(audio_path, sr=16000)
inputs = feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1)
pain_scores = []
for idx, prob in enumerate(probs[0]):
emotion = model.config.id2label[idx]
if emotion in pain_emotions:
pain_scores.append(prob.item())
return pain_scores
except Exception as e:
print(f"Erreur lors de l'analyse audio : {e}")
return []
# ---- Fusion des scores ----
def combine_scores(scores_model1, scores_model2, weight1, weight2):
"""Combine scores from FER and audio models using weights."""
# If any list is empty, fill it with 0 values to match the other model's length
if len(scores_model1) == 0:
scores_model1 = [0] * len(scores_model2)
if len(scores_model2) == 0:
scores_model2 = [0] * len(scores_model1)
# Combine the scores using weights
combined_scores = [
(weight1 * score1 + weight2 * score2)
for score1, score2 in zip(scores_model1, scores_model2)
]
return combined_scores
# ---- Traitement de l'entrée audio ou vidéo ----
def process_input(file_path, fer_detector, model, feature_extractor):
input_type = detect_input_type(file_path)
if input_type == 'audio':
pain_scores_model1 = []
pain_scores_model2 = analyze_audio(file_path, model, feature_extractor)
final_scores = pain_scores_model2 # Pas de normalisation nécessaire ici
elif input_type == 'video':
# Traitement en parallèle des vidéos et de l'audio
with concurrent.futures.ThreadPoolExecutor() as executor:
future_video = executor.submit(extract_frames_and_analyze, file_path, fer_detector, sampling_rate=5)
future_audio = executor.submit(analyze_audio, file_path, model, feature_extractor)
pain_scores_model1, frame_indices = future_video.result()
pain_scores_model2 = future_audio.result()
final_scores = combine_scores(pain_scores_model1, pain_scores_model2, weight_model1, weight_model2)
else:
return "Type de fichier non pris en charge. Veuillez fournir un fichier audio ou vidéo."
# Décision finale
average_pain = sum(final_scores) / len(final_scores) if final_scores else 0
pain_detected = average_pain > pain_threshold
result = "Pain" if pain_detected else "No Pain"
# Affichage des résultats
if not final_scores:
plt.text(0.5, 0.5, "No Data Available", ha='center', va='center', fontsize=16)
else:
plt.plot(range(len(final_scores)), final_scores, label="Combined Pain Scores", color="purple")
plt.axhline(y=pain_threshold, color="green", linestyle="--", label="Pain Threshold")
plt.xlabel("Frame / Sample Index")
plt.ylabel("Pain Score")
plt.title("Pain Detection Scores")
plt.legend()
plt.grid(True)
# Save the graph as a file
graph_filename = "pain_detection_graph.png"
plt.savefig(graph_filename)
plt.close()
return result, average_pain, graph_filename
@app.route('/message', methods=['POST'])
def handle_message():
user_input = request.json.get('message', '')
completion = client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "user", "content": user_input}],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
response = ""
for chunk in completion:
response += chunk.choices[0].delta.content or ""
return jsonify({'reply': response})
# Chatbot interaction function
def gradio_interface(file, chatbot_input, state_pain_results):
model_name = "superb/wav2vec2-large-superb-er"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
detector = FER(mtcnn=True)
chatbot_response = "How can I assist you today?" # Default chatbot response
pain_result = ""
average_pain = ""
graph_filename = ""
# Handle file upload and process it when Submit is clicked
if file:
result, average_pain, graph_filename = process_input(file.name, detector, model, feature_extractor)
state_pain_results["result"] = result
state_pain_results["average_pain"] = average_pain
state_pain_results["graph_filename"] = graph_filename
# Custom chatbot response based on pain detection
if result == "No Pain":
chatbot_response = "It seems there's no pain detected. How can I assist you further?"
else:
chatbot_response = "It seems you have some pain. Would you like me to help with it or provide more details?"
# Update pain result and graph filename
pain_result = result
else:
# Use the existing state if no new file is uploaded
pain_result = state_pain_results.get("result", "")
average_pain = state_pain_results.get("average_pain", "")
graph_filename = state_pain_results.get("graph_filename", "")
# If the chatbot_input field is not empty, process the chat message
if chatbot_input:
# Send message to Flask server to get the response from Groq model
response = requests.post(
'http://localhost:5000/message', json={'message': chatbot_input}
)
data = response.json()
chatbot_response = data['reply']
# Ensure 4 outputs: pain_result, average_pain, graph_output, chatbot_output
return pain_result, average_pain, graph_filename, chatbot_response
# Start Flask server in a thread
def start_flask():
app.run(debug=True, use_reloader=False)
# Launch Gradio and Flask
if __name__ == "__main__":
# Start Flask in a separate thread
flask_thread = Thread(target=start_flask)
flask_thread.start()
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("""<div style="text-align:center; margin-top:20px;"><h1>PainSense: AI-Driven Pain Detection and Chatbot Assistance</h1></div>""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Audio or Video File")
with gr.Row(): # Place buttons next to each other
clear_button = gr.Button("Clear", elem_id="clear_btn")
submit_button = gr.Button("Submit", variant="primary", elem_id="submit_button")
chatbot_input = gr.Textbox(label="Chat with AI", placeholder="Ask a question...", interactive=True)
chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False)
with gr.Column(scale=1):
pain_result = gr.Textbox(label="Pain Detection Result")
average_pain = gr.Textbox(label="Average Pain")
graph_output = gr.Image(label="Pain Detection Graph")
state = gr.State({"result": "", "average_pain": "", "graph_filename": ""})
# Clear button resets the UI, including the file input, chatbot input, and outputs
clear_button.click(lambda: (None, None, "", "",""), outputs=[pain_result, average_pain, graph_output, chatbot_output, file_input])
# File input only triggers processing when the submit button is clicked
submit_button.click(
gradio_interface,
inputs=[file_input, chatbot_input, state],
outputs=[pain_result, average_pain, graph_output, chatbot_output],
)
# Chat input triggers chatbot response when 'Enter' is pressed
chatbot_input.submit(
lambda file, chatbot_input, state: gradio_interface(file, chatbot_input, state)[-1], # Only update chatbot_output
inputs=[file_input, chatbot_input, state],
outputs=[chatbot_output] # Only update chatbot output
)
interface.launch(debug=True)
|