Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| from huggingface_hub import Repository | |
| from huggingface_hub import login | |
| init_feedback = False | |
| try: | |
| login(token = os.environ['HUB_TOKEN']) | |
| repo = Repository( | |
| local_dir="backend_fn", | |
| repo_type="dataset", | |
| clone_from=os.environ['DATASET'], | |
| token=True, | |
| git_email='[email protected]' | |
| ) | |
| repo.git_pull() | |
| init_feedback = True | |
| except: | |
| pass | |
| import json | |
| import uuid | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| if init_feedback: | |
| from backend_fn.feedback import feedback | |
| from gradio_modal import Modal | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| model_name = "Merdeka-LLM/merdeka-llm-hr-3b-128k-instruct" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True) | |
| histories = [] | |
| action = None | |
| feedback_index = None | |
| session_id = uuid.uuid1().__str__() | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| # system_message, | |
| max_tokens = 4096, | |
| temperature = 0.01, | |
| top_p = 0.95, | |
| ): | |
| messages = [ | |
| {"role": "system", "content": "You are a professional lawyer who is familiar with Malaysia Law."} | |
| ] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True, | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| generate_kwargs = dict( | |
| model_inputs, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| streamer=streamer | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| for new_token in streamer: | |
| if new_token != '<': | |
| response += new_token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| def submit_feedback(value): | |
| feedback(session_id, json.dumps(histories), value, action, feedback_index) | |
| with gr.Blocks() as demo: | |
| def vote(history,data: gr.LikeData): | |
| global histories | |
| global action | |
| global feedback_index | |
| histories = history | |
| action = data.liked | |
| feedback_index = data.index[0] | |
| with Modal(visible=False) as modal: | |
| textb = gr.Textbox( | |
| label='Actual response', | |
| info='Leave blank if the answer is good enough' | |
| ) | |
| submit_btn = gr.Button( | |
| 'Submit' | |
| ) | |
| submit_btn.click(submit_feedback,textb) | |
| submit_btn.click(lambda: Modal(visible=False), None, modal) | |
| submit_btn.click(lambda x: gr.update(value=''), [],[textb]) | |
| ci = gr.ChatInterface( | |
| respond, | |
| description='Due to an unknown bug in Gradio, we are unable to expand the conversation section to full height.' | |
| # fill_height=True | |
| # additional_inputs=[ | |
| # # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| # gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), | |
| # gr.Slider( | |
| # minimum=0.1, | |
| # maximum=1.0, | |
| # value=0.95, | |
| # step=0.05, | |
| # label="Top-p (nucleus sampling)", | |
| # ), | |
| # ], | |
| ) | |
| ci.chatbot.show_copy_button=True | |
| # ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")] | |
| # ci.chatbot.height=500 | |
| if init_feedback: | |
| ci.chatbot.like(vote, ci.chatbot, None).then( | |
| lambda: Modal(visible=True), None, modal | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| ) | |