Spaces:
Runtime error
Runtime error
正确转换prompt (#1)
Browse files- 正确转换prompt (b75de531977fdea2e1fa26885437e25dbc4eae8c)
Co-authored-by: animelover <[email protected]>
app.py
CHANGED
|
@@ -8,76 +8,194 @@ from compel import Compel, ReturnedEmbeddingsType
|
|
| 8 |
|
| 9 |
import re
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
def parse_prompt_attention(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
res = []
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
return res
|
| 22 |
|
| 23 |
-
def prompt_attention_to_invoke_prompt(
|
| 24 |
-
|
| 25 |
-
for
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
|
|
|
|
| 42 |
if compel_process_sd:
|
| 43 |
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
|
| 44 |
else:
|
| 45 |
# fix bug weights conversion excessive emphasis
|
| 46 |
-
prompt = prompt.replace("((", "(").replace("))", ")")
|
| 47 |
|
| 48 |
# Convert to Compel
|
| 49 |
attention = parse_prompt_attention(prompt)
|
| 50 |
-
|
| 51 |
-
# 新增处理,当 attention 为空时
|
| 52 |
-
if not attention:
|
| 53 |
-
if only_convert_string:
|
| 54 |
-
return prompt
|
| 55 |
-
else:
|
| 56 |
-
conditioning, pooled = compel(prompt)
|
| 57 |
-
return conditioning, pooled
|
| 58 |
|
| 59 |
-
global_attention_chunks = []
|
| 60 |
-
# 下面的部分保持不变
|
| 61 |
for att in attention:
|
| 62 |
-
for
|
| 63 |
-
|
| 64 |
-
for
|
| 65 |
temp_dict = {
|
| 66 |
"weight": round(att[1], 2),
|
| 67 |
-
"
|
| 68 |
-
"prompt": f'{
|
| 69 |
}
|
| 70 |
-
|
| 71 |
|
| 72 |
max_tokens = pipeline.tokenizer.model_max_length - 2
|
| 73 |
-
|
| 74 |
current_list = []
|
| 75 |
current_length = 0
|
| 76 |
-
for item in
|
| 77 |
-
if current_length + item['
|
| 78 |
-
|
| 79 |
current_list = [[item['prompt'], item['weight']]]
|
| 80 |
-
current_length = item['
|
| 81 |
else:
|
| 82 |
if not current_list:
|
| 83 |
current_list.append([item['prompt'], item['weight']])
|
|
@@ -86,14 +204,19 @@ def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_pr
|
|
| 86 |
current_list.append([item['prompt'], item['weight']])
|
| 87 |
else:
|
| 88 |
current_list[-1][0] += f" {item['prompt']}"
|
| 89 |
-
current_length += item['
|
| 90 |
if current_list:
|
| 91 |
-
|
| 92 |
|
| 93 |
if only_convert_string:
|
| 94 |
-
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
if not torch.cuda.is_available():
|
| 99 |
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"
|
|
@@ -138,24 +261,22 @@ def infer(
|
|
| 138 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 139 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 140 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 141 |
-
requires_pooled=[False, True]
|
|
|
|
| 142 |
)
|
| 143 |
# 在 infer 函数中调用 get_embed_new
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
else:
|
| 150 |
-
negative_conditioning = None
|
| 151 |
-
negative_pooled = None
|
| 152 |
|
| 153 |
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
|
| 154 |
image = pipe(
|
| 155 |
-
prompt_embeds=conditioning,
|
| 156 |
-
pooled_prompt_embeds=pooled,
|
| 157 |
-
negative_prompt_embeds=
|
| 158 |
-
negative_pooled_prompt_embeds=
|
| 159 |
width=width,
|
| 160 |
height=height,
|
| 161 |
guidance_scale=guidance_scale,
|
|
|
|
| 8 |
|
| 9 |
import re
|
| 10 |
|
| 11 |
+
# =====================================
|
| 12 |
+
# Prompt weights
|
| 13 |
+
# =====================================
|
| 14 |
+
import torch
|
| 15 |
+
import re
|
| 16 |
def parse_prompt_attention(text):
|
| 17 |
+
re_attention = re.compile(r"""
|
| 18 |
+
\\\(|
|
| 19 |
+
\\\)|
|
| 20 |
+
\\\[|
|
| 21 |
+
\\]|
|
| 22 |
+
\\\\|
|
| 23 |
+
\\|
|
| 24 |
+
\(|
|
| 25 |
+
\[|
|
| 26 |
+
:([+-]?[.\d]+)\)|
|
| 27 |
+
\)|
|
| 28 |
+
]|
|
| 29 |
+
[^\\()\[\]:]+|
|
| 30 |
+
:
|
| 31 |
+
""", re.X)
|
| 32 |
+
|
| 33 |
res = []
|
| 34 |
+
round_brackets = []
|
| 35 |
+
square_brackets = []
|
| 36 |
+
|
| 37 |
+
round_bracket_multiplier = 1.1
|
| 38 |
+
square_bracket_multiplier = 1 / 1.1
|
| 39 |
+
|
| 40 |
+
def multiply_range(start_position, multiplier):
|
| 41 |
+
for p in range(start_position, len(res)):
|
| 42 |
+
res[p][1] *= multiplier
|
| 43 |
+
|
| 44 |
+
for m in re_attention.finditer(text):
|
| 45 |
+
text = m.group(0)
|
| 46 |
+
weight = m.group(1)
|
| 47 |
+
|
| 48 |
+
if text.startswith('\\'):
|
| 49 |
+
res.append([text[1:], 1.0])
|
| 50 |
+
elif text == '(':
|
| 51 |
+
round_brackets.append(len(res))
|
| 52 |
+
elif text == '[':
|
| 53 |
+
square_brackets.append(len(res))
|
| 54 |
+
elif weight is not None and len(round_brackets) > 0:
|
| 55 |
+
multiply_range(round_brackets.pop(), float(weight))
|
| 56 |
+
elif text == ')' and len(round_brackets) > 0:
|
| 57 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
| 58 |
+
elif text == ']' and len(square_brackets) > 0:
|
| 59 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
| 60 |
+
else:
|
| 61 |
+
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text)
|
| 62 |
+
for i, part in enumerate(parts):
|
| 63 |
+
if i > 0:
|
| 64 |
+
res.append(["BREAK", -1])
|
| 65 |
+
res.append([part, 1.0])
|
| 66 |
+
|
| 67 |
+
for pos in round_brackets:
|
| 68 |
+
multiply_range(pos, round_bracket_multiplier)
|
| 69 |
+
|
| 70 |
+
for pos in square_brackets:
|
| 71 |
+
multiply_range(pos, square_bracket_multiplier)
|
| 72 |
+
|
| 73 |
+
if len(res) == 0:
|
| 74 |
+
res = [["", 1.0]]
|
| 75 |
+
|
| 76 |
+
# merge runs of identical weights
|
| 77 |
+
i = 0
|
| 78 |
+
while i + 1 < len(res):
|
| 79 |
+
if res[i][1] == res[i + 1][1]:
|
| 80 |
+
res[i][0] += res[i + 1][0]
|
| 81 |
+
res.pop(i + 1)
|
| 82 |
+
else:
|
| 83 |
+
i += 1
|
| 84 |
+
|
| 85 |
return res
|
| 86 |
|
| 87 |
+
def prompt_attention_to_invoke_prompt(attention):
|
| 88 |
+
tokens = []
|
| 89 |
+
for text, weight in attention:
|
| 90 |
+
# Round weight to 2 decimal places
|
| 91 |
+
weight = round(weight, 2)
|
| 92 |
+
if weight == 1.0:
|
| 93 |
+
tokens.append(text)
|
| 94 |
+
elif weight < 1.0:
|
| 95 |
+
if weight < 0.8:
|
| 96 |
+
tokens.append(f"({text}){weight}")
|
| 97 |
+
else:
|
| 98 |
+
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10))
|
| 99 |
+
else:
|
| 100 |
+
if weight < 1.3:
|
| 101 |
+
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10))
|
| 102 |
+
else:
|
| 103 |
+
tokens.append(f"({text}){weight}")
|
| 104 |
+
return "".join(tokens)
|
| 105 |
+
|
| 106 |
+
def concat_tensor(t):
|
| 107 |
+
t_list = torch.split(t, 1, dim=0)
|
| 108 |
+
t = torch.cat(t_list, dim=1)
|
| 109 |
+
return t
|
| 110 |
+
|
| 111 |
+
def merge_embeds(prompt_chanks, compel):
|
| 112 |
+
num_chanks = len(prompt_chanks)
|
| 113 |
+
if num_chanks != 0:
|
| 114 |
+
power_prompt = 1/(num_chanks*(num_chanks+1)//2)
|
| 115 |
+
prompt_embs = compel(prompt_chanks)
|
| 116 |
+
t_list = list(torch.split(prompt_embs, 1, dim=0))
|
| 117 |
+
for i in range(num_chanks):
|
| 118 |
+
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt)
|
| 119 |
+
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0)
|
| 120 |
+
else:
|
| 121 |
+
prompt_emb = compel('')
|
| 122 |
+
return prompt_emb
|
| 123 |
+
|
| 124 |
+
def detokenize(chunk, actual_prompt):
|
| 125 |
+
chunk[-1] = chunk[-1].replace('</w>', '')
|
| 126 |
+
chanked_prompt = ''.join(chunk).strip()
|
| 127 |
+
while '</w>' in chanked_prompt:
|
| 128 |
+
if actual_prompt[chanked_prompt.find('</w>')] == ' ':
|
| 129 |
+
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1)
|
| 130 |
+
else:
|
| 131 |
+
chanked_prompt = chanked_prompt.replace('</w>', '', 1)
|
| 132 |
+
actual_prompt = actual_prompt.replace(chanked_prompt,'')
|
| 133 |
+
return chanked_prompt.strip(), actual_prompt.strip()
|
| 134 |
+
|
| 135 |
+
def tokenize_line(line, tokenizer): # split into chunks
|
| 136 |
+
actual_prompt = line.lower().strip()
|
| 137 |
+
actual_tokens = tokenizer.tokenize(actual_prompt)
|
| 138 |
+
max_tokens = tokenizer.model_max_length - 2
|
| 139 |
+
comma_token = tokenizer.tokenize(',')[0]
|
| 140 |
+
|
| 141 |
+
chunks = []
|
| 142 |
+
chunk = []
|
| 143 |
+
for item in actual_tokens:
|
| 144 |
+
chunk.append(item)
|
| 145 |
+
if len(chunk) == max_tokens:
|
| 146 |
+
if chunk[-1] != comma_token:
|
| 147 |
+
for i in range(max_tokens-1, -1, -1):
|
| 148 |
+
if chunk[i] == comma_token:
|
| 149 |
+
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt)
|
| 150 |
+
chunks.append(actual_chunk)
|
| 151 |
+
chunk = chunk[i+1:]
|
| 152 |
+
break
|
| 153 |
+
else:
|
| 154 |
+
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
|
| 155 |
+
chunks.append(actual_chunk)
|
| 156 |
+
chunk = []
|
| 157 |
+
else:
|
| 158 |
+
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
|
| 159 |
+
chunks.append(actual_chunk)
|
| 160 |
+
chunk = []
|
| 161 |
+
if chunk:
|
| 162 |
+
actual_chunk, _ = detokenize(chunk, actual_prompt)
|
| 163 |
+
chunks.append(actual_chunk)
|
| 164 |
+
|
| 165 |
+
return chunks
|
| 166 |
|
| 167 |
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
|
| 168 |
+
|
| 169 |
if compel_process_sd:
|
| 170 |
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
|
| 171 |
else:
|
| 172 |
# fix bug weights conversion excessive emphasis
|
| 173 |
+
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\")
|
| 174 |
|
| 175 |
# Convert to Compel
|
| 176 |
attention = parse_prompt_attention(prompt)
|
| 177 |
+
global_attention_chanks = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
|
|
|
|
|
|
| 179 |
for att in attention:
|
| 180 |
+
for chank in att[0].split(','):
|
| 181 |
+
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer)
|
| 182 |
+
for small_chank in temp_prompt_chanks:
|
| 183 |
temp_dict = {
|
| 184 |
"weight": round(att[1], 2),
|
| 185 |
+
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')),
|
| 186 |
+
"prompt": f'{small_chank},'
|
| 187 |
}
|
| 188 |
+
global_attention_chanks.append(temp_dict)
|
| 189 |
|
| 190 |
max_tokens = pipeline.tokenizer.model_max_length - 2
|
| 191 |
+
global_prompt_chanks = []
|
| 192 |
current_list = []
|
| 193 |
current_length = 0
|
| 194 |
+
for item in global_attention_chanks:
|
| 195 |
+
if current_length + item['lenght'] > max_tokens:
|
| 196 |
+
global_prompt_chanks.append(current_list)
|
| 197 |
current_list = [[item['prompt'], item['weight']]]
|
| 198 |
+
current_length = item['lenght']
|
| 199 |
else:
|
| 200 |
if not current_list:
|
| 201 |
current_list.append([item['prompt'], item['weight']])
|
|
|
|
| 204 |
current_list.append([item['prompt'], item['weight']])
|
| 205 |
else:
|
| 206 |
current_list[-1][0] += f" {item['prompt']}"
|
| 207 |
+
current_length += item['lenght']
|
| 208 |
if current_list:
|
| 209 |
+
global_prompt_chanks.append(current_list)
|
| 210 |
|
| 211 |
if only_convert_string:
|
| 212 |
+
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks])
|
| 213 |
+
|
| 214 |
+
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel)
|
| 215 |
|
| 216 |
+
def add_comma_after_pattern_ti(text):
|
| 217 |
+
pattern = re.compile(r'\b\w+_\d+\b')
|
| 218 |
+
modified_text = pattern.sub(lambda x: x.group() + ',', text)
|
| 219 |
+
return modified_text
|
| 220 |
|
| 221 |
if not torch.cuda.is_available():
|
| 222 |
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"
|
|
|
|
| 261 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 262 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 263 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 264 |
+
requires_pooled=[False, True],
|
| 265 |
+
truncate_long_prompts=False
|
| 266 |
)
|
| 267 |
# 在 infer 函数中调用 get_embed_new
|
| 268 |
+
if not use_negative_prompt:
|
| 269 |
+
negative_prompt = ""
|
| 270 |
+
prompt = get_embed_new(prompt, pipe, compel, only_convert_string=True)
|
| 271 |
+
negative_prompt = get_embed_new(negative_prompt, pipe, compel, only_convert_string=True)
|
| 272 |
+
conditioning, pooled = compel([prompt, neg_prompt]) # 必须同时处理来保证长度相等
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
|
| 275 |
image = pipe(
|
| 276 |
+
prompt_embeds=conditioning[0:1],
|
| 277 |
+
pooled_prompt_embeds=pooled[0:1],
|
| 278 |
+
negative_prompt_embeds=conditioning[1:2],
|
| 279 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
| 280 |
width=width,
|
| 281 |
height=height,
|
| 282 |
guidance_scale=guidance_scale,
|