File size: 2,624 Bytes
d99941f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a033c54
d99941f
 
 
a033c54
d99941f
a033c54
d99941f
 
 
 
ad7c518
d99941f
 
 
ad7c518
d99941f
 
 
 
 
 
 
 
 
 
a033c54
d99941f
 
 
 
 
 
 
 
 
 
 
 
3422e59
d99941f
1bd93d7
d99941f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
from PIL import Image
import requests
import hopsworks
import joblib
import pandas as pd

project = hopsworks.login()
fs = project.get_feature_store()


mr = project.get_model_registry()
model = mr.get_model("wine_model", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/wine_model.pkl")
print("Model downloaded")

def wine(type, fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, free_sulfur_dioxide,
        total_sulfur_dioxide, density, ph, sulphates, alcohol):
    print("Calling function")
#     df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]], 
    df = pd.DataFrame([[type, fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, free_sulfur_dioxide,
        total_sulfur_dioxide, density, ph, sulphates, alcohol]], 
                      columns=['type', 'fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar', 'chlorides', 'free_sulfur_dioxide',
        'total_sulfur_dioxide', 'density', 'ph', 'sulphates', 'alcohol'])
    print("Predicting")
    print(df)
    # 'res' is a list of predictions returned as the label.
    res = "Wine Quality is " + str(model.predict(df))
    # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want 
    # the first element.
#     print("Res: {0}").format(res)
    return res
    # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
    # img = Image.open(requests.get(flower_url, stream=True).raw)            
    # return img
        
demo = gr.Interface(
    fn=wine,
    title="Wine Predictive Analytics",
    description="Experiment with various wine components to predict its quality.",
    allow_flagging="never",
    inputs=[
        gr.inputs.Number(default=0, label="Type (0 for red, 1 for white)"),
        gr.inputs.Number(default=0.0, label="fixed acidity"),
        gr.inputs.Number(default=0.0, label="volatile acidity"),
        gr.inputs.Number(default=0.0, label="citric acid"),
        gr.inputs.Number(default=0.0, label="residual sugar"),
        gr.inputs.Number(default=0.0, label="chlorides"),
        gr.inputs.Number(default=0.0, label="free sulfur dioxide"),
        gr.inputs.Number(default=0.0, label="total sulfur dioxide"),
        gr.inputs.Number(default=0.0, label="density"),
        gr.inputs.Number(default=0.0, label="pH"),
        gr.inputs.Number(default=0.0, label="sulphates"),
        gr.inputs.Number(default=0.0, label="alcohol")
        ],
    outputs="text")

demo.launch(debug=True)