Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,36 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
|
|
|
|
3 |
import torch
|
4 |
-
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
from PIL import Image
|
7 |
-
import numpy as np
|
8 |
-
import random
|
9 |
-
|
10 |
-
|
11 |
-
# Only initialize GPU after spaces import
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
|
14 |
-
# Constants
|
15 |
-
#BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
16 |
-
#LORA_MODEL = "MegaTronX/SuicideGirl-FLUX" # Replace with your LoRA path
|
17 |
-
MAX_SEED = np.iinfo(np.int32).max
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
pipe =
|
22 |
pipe.load_lora_weights("MegaTronX/SuicideGirl-FLUX", weight_name="SuicideGirls.safetensors")
|
23 |
-
pipe.fuse_lora(lora_scale=0.8)
|
24 |
-
pipe.to("cuda")
|
25 |
-
|
26 |
-
|
27 |
-
# Initialize model and scheduler
|
28 |
-
'''if torch.cuda.is_available():
|
29 |
-
transformer = FluxTransformer2DModel.from_single_file(
|
30 |
-
"https://huggingface.co/MegaTronX/SuicideGirl-FLUX/blob/main/SuicideGirls.safetensors",
|
31 |
-
torch_dtype=torch.bfloat16
|
32 |
-
)
|
33 |
-
pipe = FluxPipeline.from_pretrained(
|
34 |
-
BASE_MODEL,
|
35 |
-
transformer=transformer,
|
36 |
-
torch_dtype=torch.bfloat16
|
37 |
-
)
|
38 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
|
39 |
-
pipe.scheduler.config, use_beta_sigmas=True
|
40 |
-
)
|
41 |
-
pipe.to("cuda")
|
42 |
-
|
43 |
-
# Load and apply LoRA weights
|
44 |
-
pipe.load_lora_weights(LORA_MODEL)
|
45 |
-
'''
|
46 |
-
|
47 |
|
48 |
@spaces.GPU
|
49 |
-
def generate_image(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
num_inference_steps=24,
|
55 |
-
seed=-1,
|
56 |
-
num_images=1,
|
57 |
-
progress=gr.Progress(track_tqdm=True)
|
58 |
-
):
|
59 |
-
if seed == -1:
|
60 |
-
seed = random.randint(0, MAX_SEED)
|
61 |
-
generator = torch.Generator().manual_seed(seed)
|
62 |
-
|
63 |
-
images = pipe(
|
64 |
prompt,
|
65 |
-
width=width,
|
66 |
-
height=height,
|
67 |
-
guidance_scale=guidance_scale,
|
68 |
num_inference_steps=num_inference_steps,
|
|
|
69 |
generator=generator,
|
70 |
-
|
71 |
-
|
72 |
-
num_images_per_prompt=num_images,
|
73 |
-
).images
|
74 |
-
|
75 |
-
return images, seed
|
76 |
|
77 |
# Gradio Interface
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, step=0.1, value=3.5)
|
93 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=24)
|
94 |
-
seed = gr.Slider(label="Seed (-1 for random)", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
95 |
-
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1)
|
96 |
-
|
97 |
-
generate_button.click(
|
98 |
-
fn=generate_image,
|
99 |
-
inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed, num_images],
|
100 |
-
outputs=[image_output, seed_output]
|
101 |
-
)
|
102 |
-
|
103 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
7 |
pipe.load_lora_weights("MegaTronX/SuicideGirl-FLUX", weight_name="SuicideGirls.safetensors")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@spaces.GPU
|
10 |
+
def generate_image(prompt, num_inference_steps=25, guidance_scale=7.5, seed=None):
|
11 |
+
"""Generates an image using the FLUX.1-dev LoRA model."""
|
12 |
+
generator = torch.Generator("cuda").manual_seed(seed) if seed else None
|
13 |
+
|
14 |
+
image = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
prompt,
|
|
|
|
|
|
|
16 |
num_inference_steps=num_inference_steps,
|
17 |
+
guidance_scale=guidance_scale,
|
18 |
generator=generator,
|
19 |
+
).images[0]
|
20 |
+
return image
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Gradio Interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=generate_image,
|
25 |
+
inputs=[
|
26 |
+
gr.Textbox(lines=3, label="Prompt"),
|
27 |
+
gr.Slider(minimum=10, maximum=100, value=25, label="Inference Steps"),
|
28 |
+
gr.Slider(minimum=1, maximum=15, value=7.5, label="Guidance Scale"),
|
29 |
+
gr.Number(label="Seed (Optional)"),
|
30 |
+
],
|
31 |
+
outputs=gr.Image(label="Generated Image"),
|
32 |
+
title="FLUX.1-dev LoRA Demo",
|
33 |
+
description="A demo of your FLUX.1-dev LoRA model.",
|
34 |
+
)
|
35 |
+
|
36 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|