Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import onnxruntime as ort
|
4 |
+
|
5 |
+
# Initialize the ONNX session
|
6 |
+
session = ort.InferenceSession("/content/bone_age_model.onnx")
|
7 |
+
|
8 |
+
# Define the inference function
|
9 |
+
def inference(sample_name):
|
10 |
+
sample = torch.load(f"/content/samples/{sample_name}")
|
11 |
+
age = sample['boneage'].item()
|
12 |
+
outputs = session.run(None, {"input": sample['path'].numpy()})
|
13 |
+
predicted_age = (outputs[0]*41.172)+127.329
|
14 |
+
return {
|
15 |
+
'Bone age': age,
|
16 |
+
'Predicted Bone age': predicted_age[0][0]
|
17 |
+
}
|
18 |
+
|
19 |
+
# List of sample file names
|
20 |
+
sample_files = [f"sample_{i}.pth" for i in range(1, 11)]
|
21 |
+
|
22 |
+
# Create Gradio interface
|
23 |
+
dropdown = gr.inputs.Dropdown(choices=sample_files, label="Select a sample")
|
24 |
+
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=inference,
|
27 |
+
inputs=dropdown,
|
28 |
+
outputs=[gr.outputs.Textbox(label="Bone Age"), gr.outputs.Textbox(label="Predicted Bone Age")],
|
29 |
+
title="Bone Age Prediction",
|
30 |
+
description="Select a sample from the dropdown to see the bone age and predicted bone age."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the app
|
34 |
+
iface.launch()
|