Spaces:
Running
Running
| import sys | |
| import os | |
| from os.path import join as pjoin | |
| import torch | |
| from models.vq.model import RVQVAE | |
| from options.vq_option import arg_parse | |
| from motion_loaders.dataset_motion_loader import get_dataset_motion_loader | |
| import utils.eval_t2m as eval_t2m | |
| from utils.get_opt import get_opt | |
| from models.t2m_eval_wrapper import EvaluatorModelWrapper | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| import numpy as np | |
| from utils.word_vectorizer import WordVectorizer | |
| def load_vq_model(vq_opt, which_epoch): | |
| # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt') | |
| vq_model = RVQVAE(vq_opt, | |
| dim_pose, | |
| vq_opt.nb_code, | |
| vq_opt.code_dim, | |
| vq_opt.code_dim, | |
| vq_opt.down_t, | |
| vq_opt.stride_t, | |
| vq_opt.width, | |
| vq_opt.depth, | |
| vq_opt.dilation_growth_rate, | |
| vq_opt.vq_act, | |
| vq_opt.vq_norm) | |
| ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', which_epoch), | |
| map_location='cpu') | |
| model_key = 'vq_model' if 'vq_model' in ckpt else 'net' | |
| vq_model.load_state_dict(ckpt[model_key]) | |
| vq_epoch = ckpt['ep'] if 'ep' in ckpt else -1 | |
| print(f'Loading VQ Model {vq_opt.name} Completed!, Epoch {vq_epoch}') | |
| return vq_model, vq_epoch | |
| if __name__ == "__main__": | |
| ##### ---- Exp dirs ---- ##### | |
| args = arg_parse(False) | |
| args.device = torch.device("cpu" if args.gpu_id == -1 else "cuda:" + str(args.gpu_id)) | |
| args.out_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'eval') | |
| os.makedirs(args.out_dir, exist_ok=True) | |
| f = open(pjoin(args.out_dir, '%s.log'%args.ext), 'w') | |
| dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataset_name == 'kit' \ | |
| else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
| wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) | |
| eval_wrapper = EvaluatorModelWrapper(wrapper_opt) | |
| ##### ---- Dataloader ---- ##### | |
| args.nb_joints = 21 if args.dataset_name == 'kit' else 22 | |
| dim_pose = 251 if args.dataset_name == 'kit' else 263 | |
| eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=args.device) | |
| print(len(eval_val_loader)) | |
| ##### ---- Network ---- ##### | |
| vq_opt_path = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'opt.txt') | |
| vq_opt = get_opt(vq_opt_path, device=args.device) | |
| # net = load_vq_model() | |
| model_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'model') | |
| for file in os.listdir(model_dir): | |
| # if not file.endswith('tar'): | |
| # continue | |
| # if not file.startswith('net_best_fid'): | |
| # continue | |
| if args.which_epoch != "all" and args.which_epoch not in file: | |
| continue | |
| print(file) | |
| net, ep = load_vq_model(vq_opt, file) | |
| net.eval() | |
| net.cuda() | |
| fid = [] | |
| div = [] | |
| top1 = [] | |
| top2 = [] | |
| top3 = [] | |
| matching = [] | |
| mae = [] | |
| repeat_time = 20 | |
| for i in range(repeat_time): | |
| best_fid, best_div, Rprecision, best_matching, l1_dist = \ | |
| eval_t2m.evaluation_vqvae_plus_mpjpe(eval_val_loader, net, i, eval_wrapper=eval_wrapper, num_joint=args.nb_joints) | |
| fid.append(best_fid) | |
| div.append(best_div) | |
| top1.append(Rprecision[0]) | |
| top2.append(Rprecision[1]) | |
| top3.append(Rprecision[2]) | |
| matching.append(best_matching) | |
| mae.append(l1_dist) | |
| fid = np.array(fid) | |
| div = np.array(div) | |
| top1 = np.array(top1) | |
| top2 = np.array(top2) | |
| top3 = np.array(top3) | |
| matching = np.array(matching) | |
| mae = np.array(mae) | |
| print(f'{file} final result, epoch {ep}') | |
| print(f'{file} final result, epoch {ep}', file=f, flush=True) | |
| msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}\n" \ | |
| f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}\n" \ | |
| f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}\n" \ | |
| f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}\n" \ | |
| f"\tMAE:{np.mean(mae):.3f}, conf.{np.std(mae)*1.96/np.sqrt(repeat_time):.3f}\n\n" | |
| # logger.info(msg_final) | |
| print(msg_final) | |
| print(msg_final, file=f, flush=True) | |
| f.close() | |