Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| from PIL import Image | |
| import subprocess | |
| # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # models = { | |
| # "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
| # } | |
| models = { | |
| "Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval() | |
| } | |
| processors = { | |
| "Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
| } | |
| DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)" | |
| kwargs = {} | |
| kwargs['torch_dtype'] = torch.bfloat16 | |
| user_prompt = '<|user|>\n' | |
| assistant_prompt = '<|assistant|>\n' | |
| prompt_suffix = "<|end|>\n" | |
| def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"): | |
| model = models[model_id] | |
| processor = processors[model_id] | |
| prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
| image = Image.fromarray(image).convert("RGB") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", | |
| }, | |
| {"type": "text", "text": "Describe this image."}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab(label="Qwen2-VL-2B Input"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-2B-Instruct") | |
| text_input = gr.Textbox(label="Question") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
| demo.queue(api_open=False) | |
| demo.launch(debug=True) |