Spaces:
Sleeping
Sleeping
File size: 4,713 Bytes
8e2c98e eae8d77 8e2c98e eae8d77 8e2c98e b756054 6a068d1 b756054 6a068d1 b756054 8e2c98e 6a068d1 b756054 6a068d1 b756054 eae8d77 8e2c98e eae8d77 6a068d1 8e2c98e eae8d77 8e2c98e eae8d77 8e2c98e eae8d77 8e2c98e eae8d77 8e2c98e eae8d77 8e2c98e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from langchain_core.messages import HumanMessage, AIMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, MessagesState, StateGraph
import os
from dotenv import load_dotenv
load_dotenv()
# Initialize the model and tokenizer
print("Cargando modelo y tokenizer...")
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
try:
# Load the model in BF16 format for better performance and lower memory usage
tokenizer = AutoTokenizer.from_pretrained(model_name)
if device == "cuda":
print("Using GPU for the model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True
)
else:
print("Using CPU for the model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map={"": device},
torch_dtype=torch.float32
)
print(f"Model loaded successfully on: {device}")
except Exception as e:
print(f"Error loading the model: {str(e)}")
raise
# Define the function that calls the model
def call_model(state: MessagesState):
"""
Call the model with the given messages
Args:
state: MessagesState
Returns:
dict: A dictionary containing the generated text and the thread ID
"""
# Convert LangChain messages to chat format
messages = [
{"role": "system", "content": "You are a friendly Chatbot. Always reply in the language in which the user is writing to you."}
]
for msg in state["messages"]:
if isinstance(msg, HumanMessage):
messages.append({"role": "user", "content": msg.content})
elif isinstance(msg, AIMessage):
messages.append({"role": "assistant", "content": msg.content})
# Prepare the input using the chat template
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Generate response
outputs = model.generate(
inputs,
max_new_tokens=512, # Increase the number of tokens for longer responses
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and clean the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response (after the last user message)
response = response.split("Assistant:")[-1].strip()
# Convert the response to LangChain format
ai_message = AIMessage(content=response)
return {"messages": state["messages"] + [ai_message]}
# Define the graph
workflow = StateGraph(state_schema=MessagesState)
# Define the node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)
# Add memory
memory = MemorySaver()
graph_app = workflow.compile(checkpointer=memory)
# Define the data model for the request
class QueryRequest(BaseModel):
query: str
thread_id: str = "default"
# Create the FastAPI application
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
# Welcome endpoint
@app.get("/")
async def api_home():
"""Welcome endpoint"""
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
# Generate endpoint
@app.post("/generate")
async def generate(request: QueryRequest):
"""
Endpoint to generate text using the language model
Args:
request: QueryRequest
query: str
thread_id: str = "default"
Returns:
dict: A dictionary containing the generated text and the thread ID
"""
try:
# Configure the thread ID
config = {"configurable": {"thread_id": request.thread_id}}
# Create the input message
input_messages = [HumanMessage(content=request.query)]
# Invoke the graph
output = graph_app.invoke({"messages": input_messages}, config)
# Get the model response
response = output["messages"][-1].content
return {
"generated_text": response,
"thread_id": request.thread_id
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|