File size: 4,713 Bytes
8e2c98e
 
eae8d77
 
8e2c98e
 
 
 
 
 
 
 
 
eae8d77
 
 
 
8e2c98e
b756054
 
 
 
 
6a068d1
b756054
 
 
 
 
 
 
6a068d1
b756054
 
 
 
 
8e2c98e
6a068d1
b756054
6a068d1
b756054
eae8d77
8e2c98e
 
 
 
 
 
 
 
 
 
 
eae8d77
6a068d1
 
 
 
8e2c98e
 
eae8d77
8e2c98e
eae8d77
 
 
 
 
8e2c98e
eae8d77
 
 
 
 
 
 
 
8e2c98e
 
eae8d77
 
 
 
 
8e2c98e
eae8d77
8e2c98e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

from langchain_core.messages import HumanMessage, AIMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, MessagesState, StateGraph

import os
from dotenv import load_dotenv
load_dotenv()

# Initialize the model and tokenizer
print("Cargando modelo y tokenizer...")
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"

try:
    # Load the model in BF16 format for better performance and lower memory usage
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    if device == "cuda":
        print("Using GPU for the model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            low_cpu_mem_usage=True
        )
    else:
        print("Using CPU for the model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map={"": device},
            torch_dtype=torch.float32
        )

    print(f"Model loaded successfully on: {device}")
except Exception as e:
    print(f"Error loading the model: {str(e)}")
    raise

# Define the function that calls the model
def call_model(state: MessagesState):
    """
    Call the model with the given messages

    Args:
        state: MessagesState

    Returns:
        dict: A dictionary containing the generated text and the thread ID
    """
    # Convert LangChain messages to chat format
    messages = [
        {"role": "system", "content": "You are a friendly Chatbot. Always reply in the language in which the user is writing to you."}
    ]
    
    for msg in state["messages"]:
        if isinstance(msg, HumanMessage):
            messages.append({"role": "user", "content": msg.content})
        elif isinstance(msg, AIMessage):
            messages.append({"role": "assistant", "content": msg.content})
    
    # Prepare the input using the chat template
    input_text = tokenizer.apply_chat_template(messages, tokenize=False)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    
    # Generate response
    outputs = model.generate(
        inputs,
        max_new_tokens=512,  # Increase the number of tokens for longer responses
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    # Decode and clean the response
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # Extract only the assistant's response (after the last user message)
    response = response.split("Assistant:")[-1].strip()
    
    # Convert the response to LangChain format
    ai_message = AIMessage(content=response)
    return {"messages": state["messages"] + [ai_message]}

# Define the graph
workflow = StateGraph(state_schema=MessagesState)

# Define the node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)

# Add memory
memory = MemorySaver()
graph_app = workflow.compile(checkpointer=memory)

# Define the data model for the request
class QueryRequest(BaseModel):
    query: str
    thread_id: str = "default"

# Create the FastAPI application
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")

# Welcome endpoint
@app.get("/")
async def api_home():
    """Welcome endpoint"""
    return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}

# Generate endpoint
@app.post("/generate")
async def generate(request: QueryRequest):
    """
    Endpoint to generate text using the language model
    
    Args:
        request: QueryRequest
        query: str
        thread_id: str = "default"

    Returns:
        dict: A dictionary containing the generated text and the thread ID
    """
    try:
        # Configure the thread ID
        config = {"configurable": {"thread_id": request.thread_id}}
        
        # Create the input message
        input_messages = [HumanMessage(content=request.query)]
        
        # Invoke the graph
        output = graph_app.invoke({"messages": input_messages}, config)
        
        # Get the model response
        response = output["messages"][-1].content
        
        return {
            "generated_text": response,
            "thread_id": request.thread_id
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)