File size: 7,207 Bytes
95b2f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967bb8d
 
 
 
 
 
 
 
 
 
 
 
 
95b2f1e
 
967bb8d
95b2f1e
967bb8d
95b2f1e
 
 
967bb8d
95b2f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967bb8d
 
95b2f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967bb8d
95b2f1e
 
 
967bb8d
 
 
 
 
95b2f1e
 
 
 
 
 
967bb8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b2f1e
 
 
967bb8d
 
95b2f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967bb8d
95b2f1e
 
 
 
967bb8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b2f1e
 
967bb8d
 
 
95b2f1e
967bb8d
95b2f1e
967bb8d
 
 
 
 
 
 
 
 
95b2f1e
 
967bb8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import spacy
from spacy import displacy
from cefrpy import CEFRSpaCyAnalyzer, CEFRLevel

MODEL = "en_core_web_sm"

ALL_ENTS = [
    'CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE',
    'LAW', 'LOC', 'MONEY', 'NORP', 'ORDINAL', 'ORG', 'PERCENT',
    'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART'
]

DEFAULT_ENTITY_ITEMS_TO_SKIP = [
    'QUANTITY', 'MONEY', 'LANGUAGE', 'LAW',
    'WORK_OF_ART', 'PRODUCT', 'GPE',
    'ORG', 'FAC', 'PERSON'
]

TOKEN_ATTRIBUTES = [
    "Token",
    "POS",
    "Skipped",
    "Level",
    "Start",
    "End"
]

WORDLIST_HEADER = ["Word", "Pos", "CEFR", "Level"]

DEFAULT_WORDLIST_SLIDER_LEVEL = 4.0

DEFAULT_TEXT = """The world's oldest known recipe is for beer. It dates back to around 5,000 BC and was found in ancient Sumeria (modern-day Iraq).

Due to thermal expansion, the iron structure of the Eiffel Tower can expand in hot weather, making the tower grow by up to 6 inches (15 centimeters) in height.

Did you know that the word "antidisestablishmentarianism" is often cited as one of the longest non-technical words in the English language? It originated in the 19th century in Britain during debates over the disestablishment of the Church of England, and it refers to the opposition to the withdrawal of state support for an established church. This word has gained notoriety for its length and has been used as a challenge for spelling bees and word enthusiasts alike.

In 2006, a Coca-Cola employee offered to sell Coca-Cola secrets to Pepsi. Pepsi responded by notifying Coca-Cola, and the FBI set up a sting operation to catch the culprit.

Like humans, cows form strong social bonds and often have "best friends" within their herds. They display complex social behaviors, including grooming, playing, and even grieving when separated from their friends."""

DISPLACY_RENDER_OPTIONS = {
    "colors": {
        "A1": "#b0c4de",
        "A2": "#87ceeb",
        "B1": "#90ee90",
        "B2": "#adff2f",
        "C1": "#ffd700",
        "C2": "#ff9380",
        "SKIP": "#ffafed",
        "UNKNOWN": "#BCAAA4"
    }
}

ABBREVIATION_MAPPING = {
    "'m": "am",
    "'s": "is",
    "'re": "are",
    "'ve": "have",
    "'d": "had",
    "n't": "not",
    "'ll": "will"
}

LINKS_HTML = """
<p>
    &ensp;Github: <a href="https://github.com/Maximax67/cefrpy">link</a><br>
    &ensp;Docs: <a href="https://maximax67.github.io/cefrpy">link</a><br>
</p>
"""

CSS = """
h1 {
    padding-top: 5px;
    text-align: center;
    display:block;
}
"""

nlp = spacy.load(MODEL)

def get_dict_ents(text: str, tokens: list[tuple[str, str, bool, float, int, int]]) -> dict:
    ents = []

    for token in tokens:
        if token[3]:
            ents.append({
                "start": token[4],
                "end": token[5],
                "label": str(CEFRLevel(round(token[3])))
            })
        elif token[0].isalpha():
            ents.append({
                "start": token[4],
                "end": token[5],
                "label": "SKIP" if token[2] else "UNKNOWN"
            })

    dict_ents = {
        "text": text,
        "ents": ents
    }

    return dict_ents


def get_cefr_tokens(text: str, ents_to_skip: list[str]) -> list[tuple[str, str, bool, float, int, int]]:
    doc = nlp(text)
    text_analyzer = CEFRSpaCyAnalyzer(entity_types_to_skip=ents_to_skip, abbreviation_mapping=ABBREVIATION_MAPPING)
    tokens = text_analyzer.analize_doc(doc)

    return tokens


def get_html_visualization(text: str, tokens: list[tuple[str, str, bool, float, int, int]]) -> str:
    dict_ents = get_dict_ents(text, tokens)
    html = displacy.render(dict_ents, manual=True, style="ent", options=DISPLACY_RENDER_OPTIONS)

    return html


def get_wordlist_set(tokens: list[tuple[str, str, bool, float, int, int]],
                min_level: float) -> set[tuple[str, str, bool, float, int, int]]:
    filtered_tokens = set()
    for word, pos, _, level, _, _ in tokens:
        if level and level >= min_level:
            filtered_tokens.add((word.lower(), pos, str(CEFRLevel(round(level))), level))

    return filtered_tokens


def get_wordlist(tokens: list[tuple[str, str, bool, float, int, int]], min_level: float):
    wordlist_set = get_wordlist_set(tokens, min_level)
    wordlist = list(wordlist_set)
    wordlist.sort()

    return wordlist


def get_wordlist_from_dataframe(dataframe, min_level: float):
    return get_wordlist(dataframe.values, min_level)


def process_text(text: str, ents_to_skip: list[str] | None = DEFAULT_ENTITY_ITEMS_TO_SKIP, min_level: float = DEFAULT_WORDLIST_SLIDER_LEVEL) -> tuple[list[list], str]:
    tokens = get_cefr_tokens(text, ents_to_skip)
    html = get_html_visualization(text, tokens)
    wordlist = get_wordlist(tokens, min_level)

    return tokens, wordlist, html


initial_tokens, initial_wordlist, initial_html = process_text(DEFAULT_TEXT)

demo = gr.Blocks(css=CSS)

with demo:
    with gr.Row():
        with gr.Column():
            with gr.Column():
                with gr.Row():
                    gr.Markdown("# Gradio Demo: cefrpy")
                    gr.HTML(LINKS_HTML)

                with gr.Row():
                    text_input = gr.TextArea(
                        value=DEFAULT_TEXT,
                        interactive=True,
                        max_lines=500,
                        label="Input Text",
                        show_copy_button=True
                    )

                with gr.Row():
                    ent_input = gr.CheckboxGroup(
                        ALL_ENTS,
                        value=DEFAULT_ENTITY_ITEMS_TO_SKIP,
                        label="Entity types to skip CEFR"
                    )

                with gr.Row():
                    clear_button = gr.ClearButton(text_input)

                    render_button = gr.Button(
                        "Render",
                        variant="primary"
                    )

        with gr.Column():
            with gr.Row():
                gr.Markdown("# Words CEFR level visualization")

            with gr.Row():
                rendered_html = gr.HTML(initial_html)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                tokens_output = gr.Dataframe(headers=TOKEN_ATTRIBUTES, value=initial_tokens, interactive=False)

        with gr.Column():
            with gr.Row():
                min_level_slider = gr.Slider(
                    minimum=1.0,
                    maximum=6.0, 
                    value=DEFAULT_WORDLIST_SLIDER_LEVEL,
                    step=0.02,
                    interactive=True,
                    label="Min level to generate word list"
                )

            with gr.Row():
                wordlist = gr.Dataframe(headers=WORDLIST_HEADER, value=initial_wordlist, interactive=False)

    render_button.click(
        process_text,
        inputs=[text_input, ent_input],
        outputs=[tokens_output, wordlist, rendered_html],
        api_name="process_text"
    )

    min_level_slider.release(
        get_wordlist_from_dataframe,
        inputs=[tokens_output, min_level_slider],
        outputs=[wordlist],
        api_name=False
    )

demo.launch(show_api=True)