Spaces:
Sleeping
Sleeping
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchvision
|
3 |
+
from torchvision.transforms import transforms
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
|
7 |
+
# Demo for image classification
|
8 |
+
model = torchvision.models.resnet18(pretrained=True)
|
9 |
+
|
10 |
+
trans_seq = torchvision.transforms.Compose([
|
11 |
+
transforms.Resize((224, 224)),
|
12 |
+
transforms.ToTensor(),
|
13 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
14 |
+
])
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
# Download human-readable labels for ImageNet.
|
18 |
+
response = requests.get("https://git.io/JJkYN")
|
19 |
+
labels = response.text.split("\n")
|
20 |
+
|
21 |
+
|
22 |
+
def predict(image):
|
23 |
+
"""
|
24 |
+
Predicts the confidences of different labels for the given image.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
image (torch.Tensor): The input image tensor.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
dict: A dictionary containing the label names as keys and their corresponding confidences as values.
|
31 |
+
"""
|
32 |
+
image = trans_seq(image)
|
33 |
+
image = image.unsqueeze(0)
|
34 |
+
with torch.no_grad():
|
35 |
+
prediction = torch.nn.functional.softmax(model(image)[0], dim=0)
|
36 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
37 |
+
return confidences
|
38 |
+
|
39 |
+
# Pull out some examples from internet images
|
40 |
+
examples =[
|
41 |
+
"https://github.com/EliSchwartz/imagenet-sample-images/raw/master/n01484850_great_white_shark.JPEG",
|
42 |
+
"https://github.com/EliSchwartz/imagenet-sample-images/raw/master/n01443537_goldfish.JPEG",
|
43 |
+
"https://github.com/EliSchwartz/imagenet-sample-images/raw/master/n01632777_axolotl.JPEG",
|
44 |
+
"https://github.com/EliSchwartz/imagenet-sample-images/raw/master/n01534433_junco.JPEG",
|
45 |
+
"https://github.com/EliSchwartz/imagenet-sample-images/raw/master/n01753488_horned_viper.JPEG",
|
46 |
+
]
|
47 |
+
with gr.Blocks(theme="soft") as demo:
|
48 |
+
input_img = gr.Image(label="Input Image", type="pil")
|
49 |
+
output = gr.Label(num_top_classes=3)
|
50 |
+
exam = gr.Examples(examples=examples, examples_per_page=10, inputs=[input_img], outputs=[output])
|
51 |
+
input_img.change(predict, inputs=[input_img], outputs=[output])
|
52 |
+
|
53 |
+
demo.launch()
|