Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
|
@@ -11,22 +12,33 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
11 |
st.title("I am Your GrowBuddy 🌱")
|
12 |
st.write("Let me help you start gardening. Let's grow together!")
|
13 |
|
14 |
-
# Function to load
|
15 |
-
def
|
16 |
try:
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
except Exception as e:
|
21 |
-
st.error(f"Failed to load model
|
22 |
-
return None
|
23 |
|
24 |
-
# Load
|
25 |
-
|
26 |
|
27 |
-
if not
|
28 |
st.stop()
|
29 |
|
|
|
|
|
|
|
|
|
30 |
# Initialize session state messages
|
31 |
if "messages" not in st.session_state:
|
32 |
st.session_state.messages = [
|
@@ -38,6 +50,37 @@ for message in st.session_state.messages:
|
|
38 |
with st.chat_message(message["role"]):
|
39 |
st.write(message["content"])
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# User input field for gardening questions
|
42 |
user_input = st.chat_input("Type your gardening question here:")
|
43 |
|
@@ -47,15 +90,10 @@ if user_input:
|
|
47 |
|
48 |
with st.chat_message("assistant"):
|
49 |
with st.spinner("Generating your answer..."):
|
50 |
-
|
51 |
-
|
52 |
-
response = pipe(user_input, max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
|
53 |
-
st.write(response)
|
54 |
-
except Exception as e:
|
55 |
-
st.error(f"Error during text generation: {e}")
|
56 |
-
response = "Sorry, I couldn't process your request."
|
57 |
-
st.write(response)
|
58 |
|
59 |
# Update session state
|
60 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
61 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
|
|
|
12 |
st.title("I am Your GrowBuddy 🌱")
|
13 |
st.write("Let me help you start gardening. Let's grow together!")
|
14 |
|
15 |
+
# Function to load model only once
|
16 |
+
def load_model():
|
17 |
try:
|
18 |
+
# If model and tokenizer are already in session state, return them
|
19 |
+
if "tokenizer" in st.session_state and "model" in st.session_state:
|
20 |
+
return st.session_state.tokenizer, st.session_state.model
|
21 |
+
else:
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN)
|
24 |
+
# Store the model and tokenizer in session state
|
25 |
+
st.session_state.tokenizer = tokenizer
|
26 |
+
st.session_state.model = model
|
27 |
+
return tokenizer, model
|
28 |
except Exception as e:
|
29 |
+
st.error(f"Failed to load model: {e}")
|
30 |
+
return None, None
|
31 |
|
32 |
+
# Load model and tokenizer (cached)
|
33 |
+
tokenizer, model = load_model()
|
34 |
|
35 |
+
if not tokenizer or not model:
|
36 |
st.stop()
|
37 |
|
38 |
+
# Default to CPU, or use GPU if available
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
model = model.to(device)
|
41 |
+
|
42 |
# Initialize session state messages
|
43 |
if "messages" not in st.session_state:
|
44 |
st.session_state.messages = [
|
|
|
50 |
with st.chat_message(message["role"]):
|
51 |
st.write(message["content"])
|
52 |
|
53 |
+
# Create a text area to display logs
|
54 |
+
log_box = st.empty()
|
55 |
+
|
56 |
+
# Function to generate response with debugging logs
|
57 |
+
def generate_response(prompt):
|
58 |
+
try:
|
59 |
+
# Tokenize input prompt with dynamic padding and truncation
|
60 |
+
log_box.text_area("Debugging Logs", "Tokenizing the prompt...", height=200)
|
61 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
|
62 |
+
|
63 |
+
# Display tokenized inputs
|
64 |
+
log_box.text_area("Debugging Logs", f"Tokenized inputs: {inputs['input_ids']}", height=200)
|
65 |
+
|
66 |
+
# Generate output from model
|
67 |
+
log_box.text_area("Debugging Logs", "Generating output...", height=200)
|
68 |
+
outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
|
69 |
+
|
70 |
+
# Display the raw output from the model
|
71 |
+
log_box.text_area("Debugging Logs", f"Raw model output (tokens): {outputs}", height=200)
|
72 |
+
|
73 |
+
# Decode and return response
|
74 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Display the final decoded response
|
77 |
+
log_box.text_area("Debugging Logs", f"Decoded response: {response}", height=200)
|
78 |
+
|
79 |
+
return response
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"Error during text generation: {e}")
|
82 |
+
return "Sorry, I couldn't process your request."
|
83 |
+
|
84 |
# User input field for gardening questions
|
85 |
user_input = st.chat_input("Type your gardening question here:")
|
86 |
|
|
|
90 |
|
91 |
with st.chat_message("assistant"):
|
92 |
with st.spinner("Generating your answer..."):
|
93 |
+
response = generate_response(user_input)
|
94 |
+
st.write(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Update session state
|
97 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
98 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
99 |
+
|